1. 首页 > 护墙板

一个长方体木箱长08米-一个长方体木箱长08米

一个长方体木箱长08米-一个长方体木箱长08米

宝宝知道

育儿全能助手,辣妈交流社区

立即下载

五年级数学应用题带答案

不要用方程解

拍照搜题秒出答案,下载作业帮立即下载

满意回答

1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?

90#2=45盒

90#5=18盒

答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。

2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?

57#3+19盒

答:能正好装完。

3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?

10000#(115+135)=40分

答:40分钟可以打完。

4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?

13X14=192人

答:五年级参加植树的人至少有192人.

下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.

5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:

解:两车X时后相遇.

31X+44X=300

75X=300

X=4

4小时=240分钟

答:经过240分钟后两车相距300千米.

6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?

解:设X天后挖通隧道

3X+4X=119

7X=119

X=17

答:经过17天挖通隧道.

7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?

解:设舞蹈队有X人

6X+X=140

7X=140

X=20人

答:舞蹈队有20人.

从这里开始不是方程题了.

8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?

1300X2=2600米 2600#(180+80)

=2600#260

=10分

答:这时哥哥走了10分钟.

9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?

360+480+400=1240个

答:至多可做1240个小礼包.

10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.

40#2=20人 40#4=10人 40#5=8人

40#8=5人 40#@0=4人 40#20=2人

答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.

11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?

(15+24)X18#2=351平方米

351X9=3195株

答:这块地可种玉米3159株.

12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?

5X4X3=60人 60+1=61人

答:这班有61人.

13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?

7X5X3=105粒 105+1=106粒

答:这盒巧克力糖至少有106粒.

14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?

15米=150分米 1.2米=12分米 30厘米=3分米

150X12=1800平方分米 3X3=9平方分米

1800#9=200块 200X3=600元

答:需要200块这样的方砖,需要600元.

15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?

70X45=3150平方米 3150#90=35米

答:高是35米.

16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?

10-5+1=6层 (10+5)X6#2

=15X6#2

=90#2

=45根

答:这批钢管有45根.

等等————还有————

1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨。已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨。)(用方程解答)

2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米。如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?

3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?

4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高。它的长和宽各是多少厘米?

第一题:

解:深至少是X米,

18*8X=720

144X=720

X=5

答:深至少是5米。

第二题:

50*25*1.2=1500(立方米)

1500/25=600(分钟)

600分钟=10小时

答:需要10小时。

第三题:

16*6=96立方米=96升

96*0.74=71.04千克

答:这个油桶可以装71.04千克。

第四题:

1分米=10厘米

2100/10=210(厘米)

210/70=3(厘米)或者 210/30=70(厘米)

答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米。

第5题:

有一个正方体,边长为2厘米,求这个正方体的表面积?

答案:2*2*6=24(平方厘米)

第6题:

有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?

答案:(2*2+2*1+2*1)*2=16(平方厘米)

第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?

答案:表面积:(2*5+2*8+5*8)*2=132(平方米)

体积:2*5*8=80(立方米)

第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?

0.8*0.8*0.8=0.512(平方米)=512(升)

0.8*0.8*6=3.084(平方米)=348(平方分米)

第9道:有三根木棒,分别长12厘米,44厘米,56厘米。要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?

答案:这里求的是12,44,56,的最大的公约数!你自己算吧!

第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?

答案:50*50*5=12500(平方厘米)

第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?

答案:这里是求8和10的最小公倍数。

第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?

答案:这里求的是5和7的最小公倍数在+上1

第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?

答案:40*45=1800(平方米)

1800/75=24(米)

第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?

答案:3.4*2=6.8(平方米)

第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?

答案:8.5*4=34(平方米)

第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?

答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)

第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?

答案:(5+12)*8=68(平方米)

第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米。做这个箱子至少要多少材料?

答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)

第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?

答案:0.6*0.6*6=2.16(平方米)

第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?

答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?

答案:30

22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?

答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面

23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个?

答案:(25,75)=25个(25是25和75的最大公约数)

25/25=1个

75/25=3个

最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个。

24.兰兰的父母在外地工作,她住在奶奶家。妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次。请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次?

答案:(6,9)=18天(18是6和9的最小公倍数)

60/18=3次......6天

至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次

25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车。

答案:6=2*3

8=2*2*2

12=2*3*2

3*2*2*2=24

26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米

答案:(72÷24)×(48÷24)=3×2=6

可以裁6块.

27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?

答案;求4和6的最小公倍数,等于24天

28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?

答案:求30和36的最大公约数,等于6

29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?

答案:求50.60和90的最大公约数,等于10

30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花。这些花最多能做多少花束?

答案:求24.36和48的最大公约数,等于12

31.有一个长方体,宽是高的3倍,宽与高的长度和等于长。现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米。原来长方体的体积是多少?

答案:设高为a,宽为3a,长为4a

那么横切之后,表面积增加2*3a*4a

竖切之后,表面积增加2*a*3a

24a^2+6a^2=200

a=(20/3)^0.5

体积v=12a^3=160/3*(15)^0.5

32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米?

答案:0.4×0.25+2×0.25×0.3+0.4×0.3

=0.1+0.15+0.24

=0.49㎡

33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?

答案:36÷12=3㎝

6×3×3

=54平方厘米

34.一个底面是正方形的长方形,侧面展开恰好是正方形,长方体的高为8分米,它的体积。

答案:

长方体的高=底面周长=8分米

长方体底面边长=8÷4=2(分米)

体积=底面积×高=2×2×8=32(立方分米)

35.12颗糖,平均分给3个人,每人分得这些糖的几分之几?

12/3=12/3

36.把三个完全一样的正方体木块拼成一个长方体,表面积就比原来减少了120平方厘米,拼成的正方体的表面积是多少平方厘米?

答案: 120÷4=30(平方厘米)

3×4×+1×2=14(个)小正方体的面积

14×30=420(平方厘米)

30×6×3=540(平方厘米)

37.向一个长24,宽9,高8的长方体水槽中注入6深的水,然后放入一个棱长为5的正方体铁块,水位上升了多少

答案:5×5×5÷(24×9)

=125÷216

≈0.5787

38.一个正方体所有棱长的和是84cm,它的体积是多少立方厘米?底面积是多少平方厘米?

答案:84/12=7(厘米)

体积:7*7*7= 343(立方厘米)

底面积:7*7=49(平方厘米)

39修一段路,第一天修了全长的1/4 ,第二天修了90米,这时还剩下150米没有修。这段路全长多少米?

答案设:这段路全长X米,

1/4X+90+150=X

X-1/4X=90+150

3/4X=240

X=320

40建筑工地有一堆黄沙,用去了2/3 ,正好用去了60吨。这堆黄沙原来有多少吨?

答案60/2/3=90(吨)

41用5000千克小麦可以磨出面粉4250千克,求小麦的出粉率。

答案4250/5000*100%=85%

42小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?

答案640/80%=800(千克)

43王老师到体育用品商店买了5只小足球,付出100元,找回32.5元,每只小足球多少元?

答案(100-32.5)/5=13.5(元)

44食堂里第一次买来白菜25千克,第二次买来白菜175千克,按每千克白菜6角钱计算,食堂里买白菜一共用去多少钱?

答案(25+175)*6=1200(角)=120(元)

45小华给小刚看一本书,小华4天看了132页,小刚3天看96页,谁看得快?为什么?

答案小华看的快!

因为小华:132/4=33(页)

小刚:96/3=32(页)

46体育用品商店原来有72只篮球,卖出2/3,又购进45只,现在有多少只篮球?

答案72*2/3=48(只)

72-48=24(只)

24+45=70(只)

47一个长方体的长是0.54米,比宽多8厘米,高是5厘米,这个长方体的面积是多少平方米?

答案0.54米=54厘米

54-8=46厘米

54*46*5=12420平方厘米=1.242平方米

48一根钢条长1米,截去2/5米,还剩多少米?

答案1-2/5=3/5米

49果园里计划用一块地的2/5种桃树,1/3种梨树,剩下的种苹果树。苹果树占几分之几?

答案1-(2/5+1/3)=4/15

50一个长方体的水池,长5 米,宽是长的3倍 ,宽多少米?

答案5*3=15米就这些咯!望采纳!

樱奈尒 2011-08-11

3019

900

分享

其他回答(24)

今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

解:(3×4+2.5×5+1.5×14+1×7)=35/3(辆)

答:最少需要用12辆载重量为4.5吨的汽车可以一次全部运走集装箱。

长实李嘉诚 2011-08-04

480

296

分享

1,有甲乙两个车间,如果从甲车间调10人到乙车间,则两车间人数正好相等;如果从乙车间调20人到甲车间,则甲车间人数正好是乙车间的3倍。两个车间各有多少人?

乙(20+20+20×3)÷(3-1)=50(人)

甲 50+20=70(人)

上官慕雪43 2011-08-12

470

270

分享

1,有甲乙两个车间,如果从甲车间调10人到乙车间,则两车间人数正好相等;如果从乙车间调20人到甲车间,则甲车间人数正好是乙车间的3倍。两个车间各有多少人?

方法一:用方程法解:

设乙车间原来有x人,则甲车间有x+20人;由题意列方程得

(x-20)×3=x+20+20

3x-60=x+40

2x=100

x=50

甲有50+20=70人

方法二:用算术法:

乙(20+20+20×3)÷(3-1)=50(人)

甲 50+20=70(人)

2,甲.乙两人加工零件,甲比乙每天多加工6个零件,乙途中停了15天没有加工,40天后,乙加工的零件个数正好是甲的一半。问甲.乙两人各加工了多少个零件?

设 乙每天加工X 甲每天加工X+6

2*X*25=(X+6)40

X=24

乙加工了1200 甲加工了2400

3, 学校运来43.2立方米的细沙,把这些沙铺在一个长为12米,宽为7.2米的跳远坑里,可以铺多少分米厚?

43.2÷12÷7.2=0.5米=5分米

4.一个长方体水池最多蓄水12.6吨,已知水池长6米,宽3米,水深多少米?(1立方米水重1吨。用方程解)

设水深为X米.

6×2×X=12.6×1

X=12.6÷12=1.05米

5.有一个底面边长是2分米的长方体油桶,把里面装的油注入容积是500毫升的瓶子,共装了60瓶,这个油桶装的油深是多少?

500毫升=0.5升

0.5×60÷2^2=7.5分米

6 .一块长方形铁皮,长50厘米,宽45厘米,从四个角剪掉边长为10厘米的小正方形后冲压成盒子,这个盒子能容纳多少立方厘米的物体?

(50-2×10)×(45-2×10)×10= 7500立方厘米

1115922198 2011-08-05

626

295

分享

1、筑路队要修一条长180千米的路,原来每天修6千米,修了15天以后加快速度,每天修7.5千米,修完这条路还要多少天?

1、(180-6×15)÷7.5=12(天)

2、建筑工地需要沙子106吨,先用小汽车运15次,每次运2.4吨。剩下的改用大车运,每次运5吨,还要几次运完?

2、(106-2.4×15)÷5=14(次)

3、张立买来《寓言故事》和《英语幽默》各4本,共付20元,找回7.6元,每本《寓言故事》1.6元,每本《英语幽默》多少元?

3、(20-7.6)÷4-1.6=1.5(元)

4、人民公园原来有30条船,每天收入540元。现在比原来多15条船,现在每天收入多少元?

4、540÷30×(30+15)=810(元)

5、电视机厂原计划36天生产彩电1680台,前16天完成了一半。剩下的打算6天完成,平均每天生产多少台?

5、1680÷2÷6=140(台)

1、某厂有一批煤,原计划每天烧5吨,可以烧45天。实际每天少烧0.5吨,这批煤可以烧多少天?

1、5×45÷(5-0.5)=50(天)

2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。照这样计算,剩下的塑料绳还可以做多少根?

2、(150-7.5)÷(7.5÷3)=57(根)

3、修一条水渠,原计划每天修0.48千米,30天修完。实际每天多修0.02千米,实际修了多少天?

3、0.48×30÷(0.48+0.02)=28.8(天)

4、王老师看一本书,如果每天看32页,15天看完。现在每天看40页,可以提前几天看完?

4、15-32×15÷40=3(天)

5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)

5、260÷4×2.4+260=416(千米) 260÷4×(4+2.4)=416(千米)

6、石河农场先派8台收割机参加收割晚稻,前2天收割19.2公顷,后来增加到13台收割机,用同样的速度又割4天,他们一共割多少公顷?

6、19.2÷2÷8×4×13+19.2=81.6(公顷)

7、甲乙两地相距600千米,一列客车和一列货车同时从甲开往乙,客车比货车早到4小时,客车到乙地时,货车行了400千米。客车行完全程要用多长时间?

7、 600÷[(600-400)÷4]-4=8(小时) 或 4÷(600÷400-1)=8(小时)

甲乙两地,相距500千米,甲每小时行30千米,乙每小时行20千米,问同时出发,几小时相遇?

500÷(30+20)=10

1.商店有彩色电视机210台,比黑白电视机的3倍还多21台.商店有黑白电视机多少台?

1.63台

2.用一根长12.4分米的铁丝围成一个等腰梯形,已知这个梯形的两腰共长6.4分米,面积是9平方分米,这个梯形的高是多少分米?(用方程解答)

2.3米

3.河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍.又知鸭比鹅多27只,鹅和鸭各多少只?

3.鹅9只,鸭36只

4.一个林场要栽树2000棵,前3天平均每天栽350棵.其余的要求2天栽完,平均每天要栽多少棵?

4.475棵

热心网友 2011-08-13

223

112

分享

1、六年级同学收集了180个易拉罐,其中的1/3是一班收集的,2/5是二班收集的。两个班各收集多少个?(60、72)

2、小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的1/2。小新体重多少千克?(41)

3、六年级三个班学生帮助图书室修补图书。一班修补了54本,二班修补的本数是一班的5/6,三班修补的是二班的4/3。三班修补图书多少本?(60)

4、小丽比小兰多12张彩色画片,这个数目正好相当于小兰画片张数的3/10。小兰有多少张彩色画片? 小丽有多少张?(40、52)

5、六年级有学生111人,相当于五年级学生人数的3/4。五年级和六年级一共有多少人?(259)

6、小刚家买来一袋面粉,吃了15千克,正好是这袋面粉的3/4。这袋面粉还剩多少千克?(20)

7、光明小学美术组有30人,生物组的人数是美术组的1/3,航模组的人数是生物组的4/5。航模组有多少人?(8)

8、某饲养场养了2400只鹅,鹅的只数是鸭的3/4,鸭的只数是鸡的4/5,饲养场养了多少只鸡?(4000)

9.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少(40)

以下供参考

热心网友 2011-08-12

211

146

分享

:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?

90#2=45盒

90#5=18盒

答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。

2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?

57#3+19盒

答:能正好装完。

3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?

10000#(115+135)=40分

答:40分钟可以打完。

4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?

13X14=192人

答:五年级参加植树的人至少有192人.

下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.

5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:

解:两车X时后相遇.

31X+44X=300

75X=300

X=4

4小时=240分钟

答:经过240分钟后两车相距300千米.

6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?

解:设X天后挖通隧道

3X+4X=119

7X=119

X=17

答:经过17天挖通隧道.

7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?

解:设舞蹈队有X人

6X+X=140

7X=140

X=20人

答:舞蹈队有20人.

从这

谁有6年级的奥数题目,给些我

(时间:90分钟 总分:100分)

一、填空(每空1分,共22分)

1.长方体和正方体都有( )个面,( )条棱、( )个顶点。

2.长方体或正方体的( )叫做它的表面积。

3.物体所占( )叫做物体的体积。

4.4是28的( ),28是4的( )。

5.一个数的倍数的个数是( )其中最小的倍数是( )。

6.一个自然数不是( ),就是( )。

7.把60分解质因数是( )。

8.长方体(或正方体)的体积=( )。

9.5080毫升=( )升=( )立方分米

0.05立方米=( )立方分米=( )升

10.能同时被2、5整除的数的特征是( )。

11.一个合数至少有( )个约数。

12.一根方木长3米,底面为边长3分米的正方形,它的体积是( )立方分米。

13.大正方体的棱长是小正方体棱长的2倍,小正方体的体积是大

二、判断(对的打“√”,错的打“×”,共10分)

1.正方体是由6个正方形围成的立体图形。 ( )

2.长、宽、高相等的长方体是一个正方体。 ( )

3.用四个同样大小的小正方体,可以拼成一个大正方体。( )

4.一个自然数不是质数,就是合数。 ( )

5.一个数的约数的个数是有限的。 ( )

三、整理数据并填空(共20分)

下面的数据记录了某体育夏令营一组男生一次立足跳远的成绩:

(1)根据上面的成绩填写下表

(2)参加立足跳远的一共有( )人。

(3)成绩在( )段的人数最多,是( )人。

(4)成绩超过1.29的共有( )人。

四、应用题(每题6分,共48分)

1.小明读一本书,前4天平均每天看6.25页,后3天共看24页,小明这一星期平均每天看多少页?

2.下面是某地一天四个时刻的气温,算一算这一天的平均气温

3.一种木箱,长1.2米,宽0.8米,高1米,如果外面四周都刷上油漆,刷油漆的面积是多少?

4.有一种长方体钢材,长2米,横截面是边长为5厘米的正方形,每立方分米钢重7.8千克,这根方钢材重多少千克?

5.有一个养鱼池长18米,宽12米,深3.5米,要在养鱼池各个面上抹一层水泥,防止渗水,如果每平方米用水泥5千克,一共需要水泥多少千克?

6.从一个长为6厘米长方体上截下一个体积是64立方厘米的正方体,原来这个长方体的表面积是多少平方厘米?

7.既能被6整除,又能被9整除的数,最小的是多少?

8.一张长方形纸,长48厘米,宽36厘米。要把这张纸裁成大小相等的正方形纸,而无剩余,正方形的边长最长是多少?

一、 填空题( 20%)

1. 一个班有男生25人,女生20人,男生比女生多( )%,女生比男生少( )%.

2. 把630本图书按3?4分给五年级和六年级,六年级分得图书( )本.

3. 小林骑自行车从家到学校,他骑车的速度和所需时间成( )比例.

4. 在A×B=C中,当B一定时,A和C( )比例,当C一定时,A和B( )比例.

5. 圆的直径和它的面积( )比例.

6. 在比例式X: = :2中,X=( )

7. 走一段路,甲用4小时,乙用3 小时,甲和乙行走的速度比是( )。

8. 在比例尺是1?2000000的地图上 ,量得两地距离是38厘米,这两地的实际距离是( )千米.

10、1 米:40厘米化成最简单的整数比是( ),比值是( )。

11、圆柱体的侧面展开可以得到一个长方形, 这个长方形的长相当于圆柱的( ), 宽相当于圆柱的( )。

13. 等底等高的圆柱体和圆锥体体积之和是28立方米, 圆柱体的体积是( ).

14、一个圆锥的底面半径是一个圆柱底面半径的 ,圆柱的高与圆锥高的比是4:5,那么圆锥的体积是圆柱体积的( )。

15、一根1米长的圆柱体钢材,截去2分米的一段后,表面积减少25.12平方分米,原来这根钢材的体积是( )立方分米.

二、选择题。(8%)

1、24个铁圆锥, 可以熔铸成等底等高的圆柱体的个数是[ ]

A.12个 B.8个 C.36个 D.72个

2、等底等高的圆柱、正方体、长方体的体积相比较[ ]

A.正方体体积大 B.长方体体积大 C.圆柱体体积大 D.一样大

3、圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是[ ]

A.3 B.6 C.9 D.27

4、如果A和B成正比例,B和C成正比例,那么A和C成〔 〕

A、正比例。 B、反比例。C、不成比例。

三、判断。(12%)

1、底面积和高分别相等的长方体、正方体、圆柱的体积一定相等。( )

2、圆的面积和半径成正比例。( )

3、一个圆柱的底面半径是8厘米,它的侧面展开正好是一个正方形,这个圆柱的高是16厘米。( )

4、一个比例的两个外项互为倒数,那么两个内项也一定互为倒数。( )

5、三个圆锥体积的和正好等于一个圆柱体的体积。( )

6、如果x 与y成反比例,那么3 x与y也成反比例。( )

四、求未知数x (12%)

(1)3:8 = x: 2.4 (2)x:5 = :0.5 (3) :x = 6

五、应用题(40%)

1、 一个圆柱体底面半径是2分米, 圆柱侧面积是62.分米, 这个圆柱体的体积是多少立方分米?

2、有一个圆柱形储粮桶, 容积是3.14立方米, 桶深2米, 把这个桶装满稻谷后再在上面把稻谷堆成一个高0.3米的圆锥.这个储粮桶装的稻谷体积是多少立方米? (保留两位小数)

3、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?

4、一块长方形地,量得它的周长是48米,长和宽的比是5:3。这块长方形地的面积是多少平方米?

(反面还有题)

5、用铁皮制作一个底面直径和高都是4分米的圆柱体油桶,至少需要铁皮多少平方分米?(得数保留一位小数)如果每升油重0.8千克,这个油桶可装油多少千克?(保留整千克数)。

6、两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要多少分钟?(用比例方法解)

7、刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提前半小时完成任务,工作效率需提高百分之几?(用比例的方法解)

8、有AB两个容器,如图先把A装满水,然后倒入B中,B中水的深度是多少厘米?

思考题。(10分)

某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个。照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)

一、 看拼音写词语。(10分)

dù jì shuǐ zhài nà hǎn dǐ yù wán bì guī zhào

( ) ( ) ( ) ( ) ( )

chéng fá pái huái tuī cí yǔn nuò shén jī miào suàn

( ) ( ) ( ) ( ) ( )

二、把下列词语补充完整,再按要求归类。(6分)

万人( )巷 朝夕相( ) ( )羊补牢 济济一( )( )眉之急 门( )若市

( )影不离 千钧一( )守株( )兔 一见如( ) 心( )如焚 揠苗( )长

1、形容人特别多的:_______________ _______________ __________________

2、源于寓言故事的:_______________ _______________ __________________

3、形容情况险急的:_______________ _______________ __________________

4、形容情谊深厚的:_______________ _______________ __________________

三、填空。(10分)

1、《七步诗》中曹植有感于兄弟之间自相残杀,发出感叹:“_________________ ,______________________ 。”

2、《长歌行》这首诗中“_________________ ,________________”是传诵千古的名句。告诫和激励年轻人_________________________________________________ 。

3、写一首描写边塞军旅生活的诗,题目《 ______________》,作者为 __代_ ____。

4、中国古时候有个文学家叫做司马迁的说过:“_________________ ,___________________ ,___________________ 。”

5、上联:花甲重逢,增加三七岁月。 下联是:______________ _ _________ 。

四、综合改错。(4分)

一阵微风吹来,碧绿的池水泛起阵阵波涛,使人心旷神怡。池边的花坛里胜开着牡丹,月季,芍药。它们虽然开得那么热烈,但一朵比一朵美丽,还不时散发出诱人的香味扑来。这水池,这花坛,还有远处的假山、凉亭、树木,一幅美丽的图画。

阅读部分(30%)

短文阅读。

(一)10分

晴天的早晨,每每看见白鹭孤独地站立在小树的绝顶,看来像是不大安稳,而它却很悠然,这是别的鸟少有的一种嗜好。人们说它是在了望,可它真的是在了望吗?

黄昏的空中,偶尔可以见到白鹭在低低地飞,悠然地观看这情景,可说乡村生活中的一大乐事。或许有人会感到美中不足——白鹭不会唱歌。但是白鹭的本身不就是一首优美的歌吗?

1、写出下列词的近义词。3分

孤独( ) 悠然( ) 嗜好( ) 了望( ) 安稳( ) 或许( )

2、白鹭的“嗜好”是_______________________________________________。1分

3、短文中第一处“悠然”是指__________________________,第二处“悠然”是指_________________________________。2分

4、“一大乐事”是指________________________________________________。1分

5、“美中不足”的意思是虽然很好,但还有缺陷,短文中的“不足”是指____ _ 。1分

6、“但是白鹭的本身不就是一首优美的歌吗?”这句话是__________句,有力地表达了作者对白鹭_____________________________的感情。2分

(二) 乌龟 (20分)

在我生日的那天,姑妈送我一只乌龟。我把乌龟养在水缸里,仔细观察了它的外形。(1)它有灰绿色的皮肤,头颈上**的花纹非常xǐng mù ( )。深褐色的龟壳被几条细细的纹路分割成一块块有规则的六角形,而每个六角形的内部又有一圈圈排列着的更小的六角形。(2)我想这也许同树木一样,树有年轮,而乌龟也同样用这一圈圈的纹路来暗示它的年纪吧。

一天,我做了这样一个实验,把乌龟四脚朝天向上放着,想看它是如何翻身的。只见它紧缩的脑袋_________了出来,同时那双小眼睛______个不停。等到它的脖子_____到一定长度以后,突然它的头颈往旁边一_______,然后用力往地上一_______,“叭”的一声,乌龟______过身来了。我不禁为它的jīng cǎi ( )表演而叫绝。(翻、伸、眨、侧、露、顶) 俗话说 千年王八 万年龟 乌龟的生命力是惊人的 一次,我为了复习迎考一连一个多月没有喂它,( )乌龟仍然很好地活着,(3)只是背上隐约地看见那嶙峋的瘦骨。

又有史料记载,古时候有一起冤案,当事人把事情的经过详细地刻在乌龟的壳上,两千年后,人们抓到了乌龟,终于使事情zhēng xiàng dà bái ( )。

1、在文中拼音后面的括号里面写出正确的词语。3分

2、从第二自然段后面的括号里选择恰当的动词填在该段的横线上。3分

3、在第三自然段的括号里填上恰当的关联词。1分

4、给第三段加上标点符号。3分

5、查“载”时,用部首查字法应先查______部,再查______画,用音序查字法应先查音序______,再查音节___________。当“载”读zǎi时可组成词语_________,读zài时可组成词语_______ __ __。2分

6、“看到乌龟的表演,我不停地赞叹。”画线部分的意思可用成语__________ 来表示;“两千年后,人们终于使事情搞清楚了”画线部分的意思可用成语_____________或__________ 来表示。3分

7、 文中加“_______”线的句子属于下面的哪种描写,把序号填在括号里。1分

实在事物: 联想:

8、 按要求改写句子。1分

(1)乌龟也同样用这一圈圈的纹路来暗示它的年纪。(缩句)

____________________________________________________________________

(2)乌龟的生命力是惊人的。(改成反问句)

___________________________________________________________________

9、作者通过仔细观察,从__________、__________、___________三个方面描写了乌龟的特点,表达了作者_______________________________ ____。3分

作文部分(40%)

作文。(30分)

题目:假如我有一根金手指

假如你有一根无所不能的金手指,你会……请你展开想象,写一篇400字以上的作文。

一、看拼音、写词语。10%

luǒ lù páo xiào zhuāng shì nahan leigu

( ) ( ) ( ) ( ) ( )

huā bàn jì mò xiào lǜ biān yuán jí zào

( ) ( ) ( ) ( ) ( )

二、用“√选出下列带点字的正确读音。3%

春风(fēnɡ fēn ) 染绿( lǜ lù ) 锨镐( ɡāo ɡǎo )

涌起(yǒnɡ yōnɡ ) 结束(sù shù ) 树丛(cónɡ chónɡ)

三、多音字组词。4%

xuē ( ) xiǔ( ) liánɡ( ) sàn( )

削 宿 量 散

xiāo( ) sù( ) liànɡ( ) sǎn( )

字词山坡

四、趣填“不”字成语。4%

生生不( ) 迫不( ) 爱不( ) 奋不( )

不( )不( ) 情不( ) ( )不苟 ( )不朽

( )不屈 ( )不易 ( )不理 ( )不舍

五、选择恰当的词填入下列各句中。4%

骤然 突然 毅然 坦然

(1)宇宙飞船在返航途中( )发生了故障。

(2)在生命的最后时刻,科马洛夫神情( )地向首长汇报了飞行探险情况。

(3)看到12岁的女儿,科马洛夫的眼睛里( )飘过一片慈云。

(4)科马洛夫( )和亲人们挥手告别,为航天事业英勇地献身了。

六、将括号里能与前面搭配的词画出来。3%

树立(理想 决心) 端正(态度 目标) 克服(困难 失误)

生活(艰苦 艰巨) 山河(华丽 壮丽) 形势(严肃 严峻)

办法(美妙 巧妙) 国家(富强 富裕) 倾诉(心灵 心声)

观赏(风景 情景) 精通(业务 业绩) 创造(奇迹 奇特)

七、选择合适的关联词语填在括号中。4%

既然……就…… 尽管……还是…… 既……又……

要……不要…… 因为……所以…… 如果……就……

A、( )风雪很大,( )阻挡不了爷爷晨练的决心。

B、弟弟( )会唱歌,( )会跳舞。

C、( )你订了学习计划,( )应当按着去做。

D、我们( )做自己会管理自己的人,( )做依赖别人的衣来伸手饭来张口的人。

句子小潭

八、照样子,写句子。5%

例:维也纳是欧洲古典音乐的摇篮。

(1)黄河是 的摇篮。

(2) 是 的摇篮。

(3) 是 的摇篮。

九、修改病句。(用修改符号)

1、放学一回家,小丽把作业完了。

2、玲玲经常帮助做家务活。

3、大家怀着愉快的心情和步伐走进校门。

4、我多么愿望饲养自己心爱的小动物呀!

阅读积累考考你

十、填空。16%

1.《浪淘沙》的作者是 。《牧童》的作者是 ,默写前两句 ,

2.地满红花红满地, 。

一夜 ,半夜 。三秋 ,中秋 。

翠翠红红, 。风风雨雨, 。

3.默写《舟过安仁》

, 。

, 。

十一、阅读感悟。19%

(一)

活跃了一天的太阳,依旧像一个快乐的孩童。它歪着红扑扑的脸蛋,毫无倦态,潇潇洒洒地从身上抖落下赤朱丹彤,在大海上溅出无数夺目的亮点。于是,天和海都被它的笑颜感染了,金红一色,热烈一片。

1、写出下列词语的近义词。3%

依旧( ) 夺目( ) 感染( )

2、照词语的组成方式,仿写词语。3%

红扑扑(ABB式)__________ 、_____________、____________

隐隐约约(AABB式)____________、____________ 、____________

3、这段话把夕阳比作快乐的________。片段通过一系列的动词,如“ ”、“__________”、“__________”生动形象地写出了它的“快乐”和“淘气”。4%

“成”与“功”

失败者对于成功,一方面是羡慕不已,另一方面是急躁不安,巴不得一口吃成个大胖子。殊不知成功是由 成 与 功 两个字组成的 成是功的积累 叫做 功到自然成

晋代大书法家王羲之,20年临池学书,洗笔把池水都染成黑色了,才有在书法上炉火纯青的造诣。功是成的基础,一个人要想取得成功,必须要经过艰苦的奋斗,这个过程也就是功的积累过程。

一滴水从檐楣上掉下来,重重地落在石头上,“啪”的一声炸出一朵水花,可是石头上看不到丝毫的痕迹。然而,经过一年、两年……坚硬的石头终于被水滴滴穿。

如果成功很容易,无需奋斗就能达到的话,如果成功不是需要功的积累,不需要努力攀登的话,那成功就会变得廉价,成功就失去了它原有的耀人的色泽,那我们还要成功干吗?

李时珍跋山涉水,遍尝百草,数十年如一日地收集整理,笔耕不息,才有药学巨著《本草纲目》的问世;司马迁游历各山大川,博览经典秘籍,遭受宫刑,忍辱在走负重,笔耕不辍,才有《史记》的诞生。向成功的路上,既无捷径,也没有宝葫芦,所以与其坐着羡慕别人“成”,倒不如站起来积累自己的“功”。须知,任何一朵鲜花的盛开,都需要花苞长期孕育;任何一枚勋章都要成功者付出相应的代价。成功是自私的,它绝不会将辉煌施舍给懒汉,成功又是公平的,它会毫不保留地将满天的灿烂星光照在坚持不懈的奋斗者身上。

1.给第一小节的空白处加上标点。

2.品一品(找出文中10个好词)

3.成功既是( ),又是( )。

4.“成”和“功”有着密切的关系,成是功的 ,功是成的 。成功对于懒汉来说是 的,对于奋斗者来说又是 的。

给你的评价:

太好学了!前途远大!

电话拉黑之后我怎么打进去

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2、2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33.学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35.学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38.光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43.有一个长方形纸板,如果只把长增加2厘米,面积就增加米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

答案;

1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3

=45+15

=60(千克)

答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4

=8÷4

=2(千米)

答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]

=0.6÷[13-20÷2]

=0.6÷3

=0.2(元)

答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2

=255(千米)

答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5- 3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:

(32.5×2+5)÷(4+1)

=(65+5)÷5

=70÷5

=14(吨)

甲仓存粮:

14×4-5

=56-5

=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:

(400-10×4)÷(4+5)

=(400-40)÷9

=360÷9

=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:

(455-30×6)÷(6+5)

=(455- 180)÷11

=275÷11

=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(75- 65)]

=140×[40÷10]

=140×4

=560(千米)

答:甲乙两地相距 560千米。

11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

解:(20×250-4400)÷(10+20)

=600÷120

=5(箱)

答:损坏了5箱。

12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

解:4×2÷(12-4)

=4×2÷8

=1(时)

答:第二中队1小时能追上第一中队。

13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)

=2500÷500

=5(天)

这堆煤的重量:

1500×(5-1)

=1500×4

=6000(千克)

答:这堆煤有6000千克。

14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

答:每支铅笔0.2元。

15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解:卡车的数量:

360÷[10×6÷(8-6)]

=360÷[10×6÷2]

=360÷30

=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]

=360÷[30+10]

=360÷40

=9(辆)

答:可用卡车12辆,客车9辆。

16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:

(720×3-1200)÷80

=960÷80

=12(天)

公路全长:

(720+80)×12+1200

=800×12+1200

=9600+1200

=10800(米)

答:这条公路全长10800米。

17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋

150双

18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

答:运进水泥180袋,沙子360袋。

19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的价钱:

3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

答:这两个加数分别是52和520。

21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

解:9-(16-9)

=9-7

=2(千克)

答:桶重2千克。

22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

解:(10-5.5)×2=9(千克)

答:原来有油9千克。

23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

解:(22-10)÷(5-2)

=12÷3

=4(千克)

答:桶里原有水4千克。

24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

答:原来小红有23本,小华有13本。

25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

解:15×5÷(5-2)=25(千克)

答:原来每桶油重25千克。

26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

解:9÷(3-1)×(5-1)=18(分)

答:锯成5段需要18分钟。

27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

解:35÷(2-1)=35(人)

女工原有:

35+17=52(人)

男工原有:

52+35=87(人)

答:原有男工87人,女工52人。

28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

解:12×5÷(5+1)=10(千米)

答:返回时平均每小时行10千米。

29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

解:18÷(5+4)=2(小时)

8×2=16(千米)

答:狗跑了16千米。

30、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

解:总个数:

(21+20+19)÷2=30(个)

白球:30-21=9(个)

红球:30-20=10(个)

黄球:30-19=11(个)

答:白球有9个,红球有10个,黄球有11个。

31、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

解:(33-18)÷(5-2)=5(米)

18-5×2=8(米)

答:一根粗钢管长8米,一根细钢管长5米。

32、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

解:4.8×10÷(12-10)=24(吨)

答:原计划每天生产水泥24吨。

33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。

解:70+30-80

=100-80

=20(人)

答:既唱歌又跳舞的有20人。

34、想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。

解:36+38+5-59=20(人)

答:双科都参加的有20人。

35、想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

解:5×(4÷2)+6=16(把)

640÷16=40(元)

40×5÷2=10O(元)

答:桌子和椅子的单价分别是100元、40元。

36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

解:(45-5)÷4+5

=10+5

=15(岁)

答:今年儿子15岁。

37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

解:18×2÷(4-1)=12(千克)

12×4=48(千克)

答:原来甲桶有油48千克,乙桶有油12千克。

38、想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

解:(5×20-75)÷8=2(题)……5(分)

20-2-1=17(题)

答:答对17题,答错2题,有1题没答。

39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

解:(240+264)÷(20+16)

=504÷30

=14(秒)

答:从两车头相遇到两车尾相离,需要14秒。

40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

解:(600+1150)÷700

=1750÷700

=2.5(分)

答:火车通过隧道需2.5分。

41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

解:60×2÷(60-50)=12(分)

50×12=600(米)

答:小明从家里到学校是600米。

42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

解:600÷(400-300)

=600÷100

=6(分)

答:第一次相遇

43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

解:(12÷2)×(8÷2)=24(平方厘米)

答:这个长方形纸板原来的面积是24平方厘米。

时经过的时间是6分钟。

44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

解:(20-7.4)÷3-2.4

=12.6÷3-2.4

=4.2-2.4

=1.8(元)

答:每千克梨1.8元。

45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

解:135÷3÷(2+1)=15(千米)

15×2=30(千米)

答:甲乙每小时分别行30千米、15千米。

46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

解:12÷(8-5)=4(次)

8×4+5×4+12=64(个)

或8×4×2=64(个)

答:一共取了4次,盒子里共有64个球。

47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

解:

12和18的最小公倍数是36

6时+36分=6时36分

答:下次同时发车时间是上午6时36分。

48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

解:(45-15)÷(11-1)=3(岁)

15-3=12(年)

答:12年前父亲的年龄是儿子年龄的11倍。

49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

解:2、3、4、5的最小公倍数是60

60-1=59(支)

答:这盒铅笔最少有59支。

50、想:根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

解:(40÷5)×(40÷8)=40(平方米)

答:平行四边形地原来的面积是40平方米。

求初一数学题(奥数也行)要答案,题稍微难点

通常我们手机被拉黑。打电话过去的时候都会有五种声音回应:

第一,您拨打的手机已关机,请稍后再拨。

第二,对不起,您拨打电话是空号。

第三,您拨打的电话正在通话中,请稍候再过。

第四,一直都是嘟嘟嘟的声音。

第五,您拨打的电话不在服务区,请稍后再拨。

以上无论哪一种情况,都有被拉黑的迹象(前提是对方的电话一直是正常使用中的)。

当我们迫切的需要联系到对方时,这个时候不用着急,可以下载一些网络电话。可以通过网络电话联系到对方,网络电话一般都可以设置匿名,跨越区域,随机号码等方式拨通对方的电话号码。

一般我们常见的网络电话软件有:

云信网络电话,触宝电话,云拨电话,4G网络电话,等等可以自己去网上搜索下载。

常见的拨打电话可以隐藏号码及归属地显示的方法,具体操作如下:

一、开通来电隐藏功能:

指固话或手机申请了该业务后,拨打电话时,拒绝在对方电话上显示主叫号码。也叫主叫号码拒显。

二、使用网络电话:

网络电话又称为VOIP电话,是通过互联网直接拨打对方的固定电话和手机。

三、国外号码卡:

一般国外卡打国内电话,显示的是数字代开或者显示随机号码。

最后提示:网络电话软件一般都不是免费的。有些网络电话每天拨打的次数是有限定的。也就相当于你下载了个网络电话,你要充值话费。那个功能才会开通。

个人建议:如果一个人存心不想接你电话,不想听你说话,即使你打通了,又能怎么样?他一样可以挂掉你的电话。很多方法都是治本不治根。凡事请三思而行,不要花无谓的时间和精力用在毫无收获的事情上。

a,b,c,d,e五个数,和为8,平方和为16,求e的最值。

甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)

11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

小学数学应用题综合训练(03)

21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

小学数学应用题综合训练(04)

31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

小学数学应用题综合训练(05)

41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?

44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?

49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?

50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

小学数学应用题综合训练(06)

51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?

52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?

53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?

54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.

55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.

56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?

57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?

58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?

59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.

60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.

小学数学应用题综合训练(07)

61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?

62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?

63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?

64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.

65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?

66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?

67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?

68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?

69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.

70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?

小学数学应用题综合训练(08)

71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?

72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?

73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?

74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?

75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.

76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?

79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?

80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?

小学数学应用题综合训练(09)

81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?

82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?

83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?

84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.

85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?

86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.

87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?

88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?

89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?

90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?

小学数学应用题综合训练(10)

91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.

92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?

93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.

94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.

95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?

96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?

97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?

98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?

99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?

100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?

小学数学应用题综合训练(11)

101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?

102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?

103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?

104. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?

105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?

106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?

107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?

108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?

109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?

110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?

小学数学应用题综合训练(12)

111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?

112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?

113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?

114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?

声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。