1. 首页 > 护墙板

甲乙丙三只木箱-甲乙丙三箱内共有384个皮球

甲乙丙三只木箱-甲乙丙三箱内共有384个皮球

1.独特的埃及数:埃及同中国一样也是世界上著名的文明古国。古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15来表示2/5。用1/4+1/7+1/28来表示3/7等等。现在有90个埃及分数1/2、1/3、1/4......1/90、1/91,你能从中挑出10个,加上正负号,是他们的和等于-1吗?想一想:你能从中挑出8个数加上正负号,是他们的和等于-1吗?

解:

要利用90个埃及分数:1/2,1/3,1/4,…,1/90,1/91,从中挑出10个,加上正负号,使他们的和等于-1.(即每个分数的分子都是1, 而每个分数的分母都不同.)

所以我猜想如果可以找一个数字,让它做分母,同时把这个数字可以用它的不同因数(最少10个)拆开, 且不同因数的和正好等于这个分母的相反数,问题就解决了.

所以我想构造一个2,3,4,5,6,7,8,9的最的公倍数是 (2^3)*(3^2)*5*7=8*9*5*7

这个数字太大,不可能用它来做分母.

经过观察得到(2^3)*(3^2)=8*9=72,它可以作为未来十个分数的公分母.

再仔细观察(2^3)*(3^2)的因数有3+2+3*2+1=12, 即:

(2,4,8) (3, 9) (6,18,12,36,24,36,72)(1). (考虑到未来

注释:

[第一个括号内的72的因数由单一因数2形成,分别是2^1,2^2和2^3

[第二个括号内的72的因数由单一因数3形成,分别是3^1 和3^2

[第三个括号内的72的因数由因数2和3形成,分别是2,4,8与3,9的两两成积.

[第四个括号内是任何数的因数=1

将上述的因数按由小到大排列即: 1,2,3,4,6,8,9,12,18.24,36,72.因为72/72=1,实际上已经不是分数,所以拿掉这个因数,剩11个因数.

剩下的问题就是如何在1,2,3,4,6,8,9,12,18.24,36共11个数字中,选择10个通过添加正负号使得它的结果等于72了. (因为加和的结果是不是-72,所以奇因数应该成对出现)

在EXCEL中将上述的因数选择10个一一键入,排成一列,求和.然后通过”只调整正负号”,使得结果等于72就成了.我至少得到以下三组结果.

A: (-2,3,4,-6,-8,-9,-12,18,-24,-36)

B: (2, 3,-4,-6,8,-9,12,-18,-24,-36)

C: (-1, -2, 3, -4, -6, -8, -12, 18, -24, -36)

所以我们可以分别得到

A: (-2 + 3 + 4 – 6 – 8 – 9 –12 + 18 – 24 - 36)/72= -72/72= -1

B: (2 + 3 – 4 –6 + 8 – 9 +12 –18 – 24 -36)/72= -72/72 = -1

C: (-1, -2, 3, -4, -6, -8, -12, 18, -24, -36)/72= -72/72 = -1

左边化简得到:

A: (-2 + 3 + 4 – 6 – 8 – 9 –12 + 18 – 24 - 36)/72

= -2/72 + 3/72 + 4/72 – 6/72 – 8/72 – 9/72 –12/72 + 18/72 – 24/72 – 36/72

= -1/36 + 1/24 + 1/18 – 1/12 – 1/9 – 1/8 –1/6 + 1/4 – 1/3 – 1/2

B: (2 + 3 – 4 –6 + 8 – 9 +12 –18 – 24 -36)/72

=2/72 + 3/72 – 4/72 –6/72 + 8/72 – 9/72 +12/72 –18/72 – 24/72 –36/72

=1/36 + 1/24 – 1/18 –1/12 + 1/9 – 1/8 +1/6 –1/4 – 1/3 –1/2

C: (-1 – 2 + 3 - 4 - 6 - 8 –12 + 18 - 24 -36)/72

= -1/72 – 2/72 + 3/72 – 4/72 – 6/72 – 8/72 –12/72 + 18/72 – 24/72 –36/72

= -1/72 – 1/36 + 1/24 – 1/18 – 1/12 – 1/9 –1/6 + 1/4 – 1/3 –1/2

2.在1000和9999之间由四个不同的数字组成,而且个位数和千位数的差(以大减小)是2,这样的整数共有多少个?(列出来)

解:840种

以下为全部840个数字

1023 1043 1053 1063 1073 1083 1093 1203

1243 1253 1263 1273 1283 1293 1403 1423

1453 1463 1473 1483 1493 1503 1523 1543

1563 1573 1583 1593 1603 1623 1643 1653

1673 1683 1693 1703 1723 1743 1753 1763

1783 1793 1803 1823 1843 1853 1863 1873

1893 1903 1923 1943 1953 1963 1973 1983

2014 2034 2054 2064 2074 2084 2094 2104

2130 2134 2140 2150 2154 2160 2164 2170

2174 2180 2184 2190 2194 2304 2310 2314

2340 2350 2354 2360 2364 2370 2374 2380

2384 2390 2394 2410 2430 2450 2460 2470

2480 2490 2504 2510 2514 2530 2534 2540

2560 2564 2570 2574 2580 2584 2590 2594

2604 2610 2614 2630 2634 2640 2650 2654

2670 2674 2680 2684 2690 2694 2704 2710

2714 2730 2734 2740 2750 2754 2760 2764

2780 2784 2790 2794 2804 2810 2814 2830

2834 2840 2850 2854 2860 2864 2870 2874

2890 2894 2904 2910 2914 2930 2934 2940

2950 2954 2960 2964 2970 2974 2980 2984

3015 3021 3025 3041 3045 3051 3061 3065

3071 3075 3081 3085 3091 3095 3105 3125

3145 3165 3175 3185 3195 3201 3205 3215

3241 3245 3251 3261 3265 3271 3275 3281

3285 3291 3295 3401 3405 3415 3421 3425

3451 3461 3465 3471 3475 3481 3485 3491

3495 3501 3521 3541 3561 3571 3581 3591

3601 3605 3615 3621 3625 3641 3645 3651

3671 3675 3681 3685 3691 3695 3701 3705

3715 3721 3725 3741 3745 3751 3761 3765

3781 3785 3791 3795 3801 3805 3815 3821

3825 3841 3845 3851 3861 3865 3871 3875

3891 3895 3901 3905 3915 3921 3925 3941

3945 3951 3961 3965 3971 3975 3981 3985

4012 4016 4026 4032 4036 4052 4056 4062

4072 4076 4082 4086 4092 4096 4102 4106

4126 4132 4136 4152 4156 4162 4172 4176

4182 4186 4192 4196 4206 4216 4236 4256

4276 4286 4296 4302 4306 4312 4316 4326

4352 4356 4362 4372 4376 4382 4386 4392

4396 4502 4506 4512 4516 4526 4532 4536

4562 4572 4576 4582 4586 4592 4596 4602

4612 4632 4652 4672 4682 4692 4702 4706

4712 4716 4726 4732 4736 4752 4756 4762

4782 4786 4792 4796 4802 4806 4812 4816

4826 4832 4836 4852 4856 4862 4872 4876

4892 4896 4902 4906 4912 4916 4926 4932

4936 4952 4956 4962 4972 4976 4982 4986

5013 5017 5023 5027 5037 5043 5047 5063

5067 5073 5083 5087 5093 5097 5103 5107

5123 5127 5137 5143 5147 5163 5167 5173

5183 5187 5193 5197 5203 5207 5213 5217

5237 5243 5247 5263 5267 5273 5283 5287

5293 5297 5307 5317 5327 5347 5367 5387

5397 5403 5407 5413 5417 5423 5427 5437

5463 5467 5473 5483 5487 5493 5497 5603

5607 5613 5617 5623 5627 5637 5643 5647

5673 5683 5687 5693 5697 5703 5713 5723

5743 5763 5783 5793 5803 5807 5813 5817

5823 5827 5837 5843 5847 5863 5867 5873

5893 5897 5903 5907 5913 5917 5923 5927

5937 5943 5947 5963 5967 5973 5983 5987

6014 6018 6024 6028 6034 6038 6048 6054

6058 6074 6078 6084 6094 6098 6104 6108

6124 6128 6134 6138 6148 6154 6158 6174

6178 6184 6194 6198 6204 6208 6214 6218

6234 6238 6248 6254 6258 6274 6278 6284

6294 6298 6304 6308 6314 6318 6324 6328

6348 6354 6358 6374 6378 6384 6394 6398

6408 6418 6428 6438 6458 6478 6498 6504

6508 6514 6518 6524 6528 6534 6538 6548

6574 6578 6584 6594 6598 6704 6708 6714

6718 6724 6728 6734 6738 6748 6754 6758

6784 6794 6798 6804 6814 6824 6834 6854

6874 6894 6904 6908 6914 6918 6924 6928

6934 6938 6948 6954 6958 6974 6978 6984

7015 7019 7025 7029 7035 7039 7045 7049

7059 7065 7069 7085 7089 7095 7105 7109

7125 7129 7135 7139 7145 7149 7159 7165

7169 7185 7189 7195 7205 7209 7215 7219

7235 7239 7245 7249 7259 7265 7269 7285

7289 7295 7305 7309 7315 7319 7325 7329

7345 7349 7359 7365 7369 7385 7389 7395

7405 7409 7415 7419 7425 7429 7435 7439

7459 7465 7469 7485 7489 7495 7509 7519

7529 7539 7549 7569 7589 7605 7609 7615

7619 7625 7629 7635 7639 7645 7649 7659

7685 7689 7695 7805 7809 7815 7819 7825

7829 7835 7839 7845 7849 7859 7865 7869

7895 7905 7915 7925 7935 7945 7965 7985

8016 8026 8036 8046 8056 8076 8096 8106

8126 8136 8146 8156 8176 8196 8206 8216

8236 8246 8256 8276 8296 8306 8316 8326

8346 8356 8376 8396 8406 8416 8426 8436

8456 8476 8496 8506 8516 8526 8536 8546

8576 8596 8706 8716 8726 8736 8746 8756

8796 8906 8916 8926 8936 8946 8956 8976

9017 9027 9037 9047 9057 9067 9087 9107

9127 9137 9147 9157 9167 9187 9207 9217

9237 9247 9257 9267 9287 9307 9317 9327

9347 9357 9367 9387 9407 9417 9427 9437

9457 9467 9487 9507 9517 9527 9537 9547

9567 9587 9607 9617 9627 9637 9647 9657

9687 9807 9817 9827 9837 9847 9857 9867

3. 有一合围棋子(少与100颗),小明第一次取出了全部的一半多一颗,第二次取出了剩下的一半多一颗,第三次取出了剩下的一半多一颗,......最后合子里还留下1课棋子.那么,这个合子里最多有多少颗围棋子?

解:

{[(1+1)X2+1]X2+1}X2=22

第一次拿一半多一颗即12颗,剩下10颗;

第二次拿一半多一颗即6颗,剩4颗;

第三次拿一半多一颗即3颗,最后剩下1颗

4.甲,乙,丙,三人的年龄和是64岁,乙,丙,丁三人的年龄和是36岁,甲.丁的年龄和是乙,丁的年龄和的2倍,他们4人的年龄和是多少?

解:1+1)*2=4 2*4+1=9

9*2+1=19 19*2+1=39 所以=79

39*2+1=79 79*2+1>100

5.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?

解:这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下: 设从第一列车追及第二列车到两列车离开需要x秒,列方程得: 102+120+17 x =20 x x =74.

6.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.

解:. 2. 画段图如下: 头 90米 尾 10x 设列车的速度是每秒x米,列方程得 10 x =90+2×10 x =11.

7.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

解:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。 一把椅子的价钱: 288÷(10-1)=32(元) 一张桌子的价钱: 32×10=320(元)

8.2、2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

解:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。 45+5×3 =45+15 =60(千克)

9. 3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

解:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。 4×2÷4 =8÷4 =2(千米)

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米? 11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃? 12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队? 13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克? 14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元? 15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆? 16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米? 17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双? 18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋? 19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元? 20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少? 21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米? 22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克? 23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克? 24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本? 25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克? 26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分? 27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人? 28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米? 29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米? 10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。 解:(7+65)×[40÷(75- 65)] =140×[40÷10] =140×4 =560(千米) 答:甲乙两地相距 560千米。 11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。 解:(20×250-4400)÷(10+20) =600÷120 =5(箱) 答:损坏了5箱。 12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。 解:4×2÷(12-4) =4×2÷8 =1(时) 答:第二中队1小时能追上第一中队。 13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。 解:原计划烧煤天数: (1500+1000)÷(1500-1000) =2500÷500 =5(天) 这堆煤的重量: 1500×(5-1) =1500×4 =6000(千克) 答:这堆煤有6000千克。 14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。 解:每本练习本比每支铅笔贵的钱数: 0.45÷(8-5)=0.45÷3=0.15(元) 8个练习本比8支铅笔贵的钱数: 0.15×8=1.2(元) 每支铅笔的价钱: (3.8-1.2)÷(5+8)=2.6÷13=0.2(元) 答:每支铅笔0.2元。 15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。 解:卡车的数量: 360÷[10×6÷(8-6)] =360÷[10×6÷2] =360÷30 =12(辆) 客车的数量: 360÷[10×6÷(8-6)+10] =360÷[30+10] =360÷40 =9(辆) 答:可用卡车12辆,客车9辆。 16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。 解:已修的天数: (720×3-1200)÷80 =960÷80 =12(天) 公路全长: (720+80)×12+1200 =800×12+1200 =9600+1200 =10800(米) 答:这条公路全长10800米。 17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。 解:12个纸箱相当木箱的个数: 2×(12÷3)=2×4=8(个) 一个木箱装鞋的双数: 1800÷(8+4)=18000÷12=150(双) 一个纸箱装鞋的双数: 150×2÷3=100(双) 答:每个纸箱可装鞋100双,每个木箱可装鞋 150双 18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。 解:水泥用完的天数: 120÷(30×2-40)=120÷20=6(天) 水泥的总袋数: 30×6=180(袋) 沙子的总袋数: 180×2=360(袋) 答:运进水泥180袋,沙子360袋。 19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。 解:每个茶杯的价钱: 90÷(4×5+10)=3(元) 每个保温瓶的价钱: 3×4=12(元) 答:每个保温瓶12元,每个茶杯3元。 20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。 解:第一个加数: 572÷(10+1)=52 第二个加数: 52×10=520 答:这两个加数分别是52和520。 21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。 解:9-(16-9) =9-7 =2(千克) 答:桶重2千克。 22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。 解:(10-5.5)×2=9(千克) 答:原来有油9千克。 23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。 解:(22-10)÷(5-2) =12÷3 =4(千克) 答:桶里原有水4千克。 24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。 解:小华有书的本数: (36-5×2)÷2=13(本) 小红有书的本数: 13+5×2=23(本) 答:原来小红有23本,小华有13本。 25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。 解:15×5÷(5-2)=25(千克) 答:原来每桶油重25千克。 26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。 解:9÷(3-1)×(5-1)=18(分) 答:锯成5段需要18分钟。 27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。 解:35÷(2-1)=35(人) 女工原有: 35+17=52(人) 男工原有: 52+35=87(人) 答:原有男工87人,女工52人。 28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。 解:12×5÷(5+1)=10(千米) 答:返回时平均每小时行10千米。 29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。 解:18÷(5+4)=2(小时) 8×2=16(千米) 答:狗跑了16千米。 累了,需要再提

小学方程应用题

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?

5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?

7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?

8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?

9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

10。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?

11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?

12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?

假设这批零件共有X个

13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?

14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?

15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?

16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?

17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?

经过40/9小时两车可以相遇。

18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?

19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?

21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?

22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?

23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?

24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.

25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.

26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?

27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.

28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.

这个班的男生和女生各有多少人..

29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?

30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?

31.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?

32.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?

33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?

34.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?

设长是8份,则宽是5份,多了:3份,即是24米

35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?

36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?

37.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?

38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么

39.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?

40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?

41.某工厂6月份计划用煤54吨,前半月平均每天烧煤1.6吨,剩下的煤如果每天烧1.5吨,还可以烧多少天?

42.“三跳”活动中,参加跳绳的人数是踢毽人数的3倍,已知跳绳人数比踢键子人数多18人,跳绳和踢毽子的同学各有多少人?

43.商店有一批运动衣,第一天卖出35件,第二天卖出28件,第二天比第一天少收入168元,每件运动衣售价多少元?

44.缝纫组里有布27.8米,计划先做8套成人衣服,每套用布2.6米,剩下的布再做成儿童服装,按每套用布1.4米计算,能做成儿童服装多少套?

45.小明看一本450页的书,前3天每天看30页,余下的每天看40 页,看完这本书还需多少天?

46.一辆汽车从甲地开往乙地,前2小时共行120千米,后3小时共行210千米,平均每小时行多少千米?

47.一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?

48.同学们为灾区捐献衣服,第一次捐了890件,第二次捐了950件,两次一共捐了多少件?

49.学校举行跳绳比赛,四年级组跳了800个,五年级组跳了950个,五年级组比四年级组多跳了多少个?

50.学校举行跳绳比赛,四年级组跳了800个,五年级组比四年级组多跳了150,五年级组跳了多少个?

51.飞机每小时飞行360千米,7小时一共飞行多少千米?

52.幼儿园买来苹果36千克,梨12千克,苹果的重量是梨的重量的几倍?

53

.幼儿园买来梨12千克,苹果的重量是梨的3倍,苹果有多少千克?

54.幼儿园买来苹果36千克,苹果的重量是梨的3倍,梨有多少千克?

55. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

56. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

57. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

58. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

59. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

60. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

奥数题,高手进

虽然不全是方程应用题 但这些题都对了 你离满分就不远了啊 加油啊

1.学校建校舍计划投资45万元,实际投资40万元。实际投资节约了百分之几?

2.学校五月份计划用电480度,实际少用60度。实际用电节省百分之几?(福建云宵实验小学)

3.某厂计划三月份生产电视机400台,实际上半个月生产了250台,下半个月生产了230台,实际超额完成计划的百分之几?(南昌市青云谱区)

4.现有甲、乙、丙三个水管,甲水管以每秒4克的流量流出含盐20%的盐水,乙水管以每秒6克的流量流出含盐15%的盐水,丙水管以每秒10克的流量流出水,丙管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒……三管同时打开,1分钟后都关上,这时流出的混合液含盐百分之几?(武汉大学附属外国语学校)

5.新光小学书画班有75人,舞蹈班有48人,书画班人数比舞蹈班多百分之几?(南宁市)

6.小明用一包绿豆做实验,其中发芽的种子有100粒,没有发芽的种子有25粒,求这包绿豆的发芽率。(浙江温岭市)

看4页,第二天看了全书的几分之几?(江苏无锡市)

8.为灾区捐款,小华捐4.2元,比小丽多捐了0.4元,小华比小丽多捐几分之几?(河南安阳市)

9.一件衣服打八折出售卖100元,实际90元卖出。实际几折卖出?(浙江仙居县)

10.食堂运来600千克大米,已经吃了4天,每天吃50千克。剩下的5天吃完,平均每天吃多少千克?(南京市建邺区)

11.3箱橘子比3筐苹果少24千克。平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)

12.在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)

13.大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)

14.小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)

15.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。平均每个少先队员捐款多少元?(上海市)

16.育才小学买来2个小足球和25根长绳,共用去408.5元,每个小足球的价钱是48元,每根长绳的售价是多少元?(江苏无锡市南长区)

17.王华买《趣味数学》和《故事大王》各5本,一共用了20元。每本《趣味数学》2.6元,每本《故事大王》多少元?(西安市雁塔区)

18.运输队要运走89吨货物,前三次每次运走10.5吨。其余的分5次运完,平均每次要运走多少吨?(上海市)

19.4个同学在一张乒乓球台上单打60分钟,平均每人打了多少分钟?(福建建瓯市)

20.期末考试语文、数学、常识三门功课的平均分是95分,语文、数学两门功课的平均分是93分,问:常识考了多少分?(浙江江山市)

21.五(1)班同学植树,26个男生平均每人植6棵,24个女生平均每人植5棵。男、女生平均每人植树多少棵?(南昌市东湖区)

22.李东拿5元钱买文具。他买铅笔已用去1.5元,剩下的钱买练习簿,每本0.35元。他可以买多少本练习簿?(上海市长青学校)

23.一批苹果,若平分给幼儿园大班的小朋友,每人可分得6个;若平分给幼儿园小班的小朋友,每人可分得3个;若平分给大、小两个班的小朋友,每人可分得多少个?(南京市建邺区)

24.时新手表厂原计划每天生产75块手表,12天完成任务。实际10天完成任务,实际平均每天生产多少块?(武汉市青山学校)

25.实验小学开展“环保周种盆花”活动,前3天平均每天种114盆,后4天共种750盆,“环保周”内平均每天栽种盆花多少盆?(长沙市实验小学)

剩下的7.5小时要耕完,平均每小时要耕地多少?(湖北阳新县)

27.一台织布机7小时织布105米,照这样的速度,再织8小时,一共可以织布多少米?(浙江临安市)

28.一辆汽车3小时行135千米,照这样计算,8小时行多少千米?(广西桂林市)

29.120千克大豆可榨出豆油16.2千克,2000千克大豆可榨出豆油多少千克?(用比例解)(浙江泰顺县)

30.某加工厂2台磨粉机3小时能磨面粉14.4吨。照这样计算,6台磨粉机8小时一共能磨面粉多少吨?(福建建瓯市)

31.某服装厂接到生产1200件衬衫任务,前3天完成了40%,照这样计算,完成任务还需要多少天?(写出两种不同解法)(合肥市中市区寿春学校)

32.某工程队要铺建一条公路,前20天已铺建了2.8千米,照这样计算,剩下的4.2千米的路段,还需要多少天才能铺建完成?(用比例方法解)(浙江临海市)

33.丰收农具厂制造一批镰刀。原计划每天制造360把,18天完成。实际每天多制造72把,照这样计算,多少天就能完成任务?(武汉市青山区)

34.长风电扇厂计划生产2800台电扇。前6天已经生产了672台,照这样计算,还要生产多少天才能完成任务?(南京市白下区)

35.育民小学校办厂,原计划12天装订21600本练习本,实际每天比原计划多装订360本。实际完成生产任务用了多少天?(天津市红桥区)

36.小青看一本260页的故事书,前3天每天看20页,如果剩下的每天看25页,还要几天看完?(西宁市城中区)

37.学校买来塑料绳342米做短跳绳,先剪下同样长的5根,一共用去9米,照这样计算,买来的塑料绳可以做短跳绳多少根?(南京市鼓楼区)

38.两筐苹果单价相同,甲筐苹果重64千克,乙筐苹果重48千克,两筐都卖出一部分后,剩下的苹果重量相等,已知乙筐比甲筐少卖了56元,甲筐苹果可卖多少元?(合肥市中市区寿春学校)

39.时新手表厂原计划25天生产1000块手表,实际每天生产了50块,实际比计划提前几天完成任务?(河南开封市)

40.电视机厂计划30天生产电视机1200台,实际每天比计划多生产10台,实际多少天完成任务?(浙江东阳市)

41.服装厂要加工一批校服,原计划每天生产250套,30天可以完成,实际每天生产300套,实际多少天完成?(用比例解答)(江西景德镇市)

42.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)(银川市二十一小学)

43.装配小组要装配一批洗衣机,计划每天装配27台,20天完成任务。实际每天装配了30台,只需几天就可以完成任务?(江苏无锡市北塘区)

44.大庆小学食堂运来24吨煤,计划烧50天。实际每天节约0.08吨,实际烧了多少天?(浙江乐清市)

45.车间生产一批零件,每天生产65套,生产12天后还差130套,这批零件一共有多少套?(武汉市江汉区滑坡路小学)

46.希望小学装修多媒体教室。计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)(南昌市东湖区)

47.装订一批同样的练习本,原计划每本装16页,可以装订250本,如果要装订成200本,每本应装多少页?(用比例解)(广西桂林市)

48.服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后,每套节约用布0.3米。节约下来的布,可以做多少套西服?(上海市长青学校)

49.师傅比徒弟多加工192个零件,已知师傅加工的零件个数是徒弟的4倍,师徒二人各加工多少个零件?(用方程解)(银川市二十一小学)

50.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?(武汉市青山区)

51.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?(浙江绍兴县)

两种方法解)(银川市实验小学)

53.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?(长沙市实验小学)

54.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?(杭州市上城区)

55.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页?(浙江平阳县)

56.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本?(上海市虹口区)

57.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?(南昌市青云谱区)

艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本?(江苏无锡市)

59.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?(江西景德镇市)

60.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少钱?(武汉市青山区)

61.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?(石家庄市长安区)

62.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?(浙江常山县)

63.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?(西安市雁塔区)

64.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?(浙江德清县)

65.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15。运来梨多少千克?(南京市白下区)

66.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?(上海市虹口区)

67.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户。甲专业户比乙专业户多分得饲料多少千克?(南京市秦淮区)

68.甲、乙两个仓库原存放的稻谷相等。现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%。甲、乙两个仓库原来各存放稻谷多少吨?(浙江嘉兴市)

69.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?(湖北松滋市)

70.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?(长沙市实验小学)

71.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?(南昌市东湖区)

72.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成。为了迎接“六一”儿童节,实际只用60天就完成了任务。实际每天生产玩具多少件?(用两种方法解答)(浙江温岭市)

73.甲、乙两个家具厂生产同一规格的单人课桌、椅,由于甲、乙两厂特

可生产1500套课桌椅。现在两厂联合生产,经过合理安排,尽量发挥各自特长。现在两厂每月比过去可多生产课桌椅多少套?(武汉市外国语学校)

74.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?(浙江诸暨市)

75.空调机厂四月份生产空调机1800台,五月份比四月份增产10%。四、五月份共生产空调机多少台?(江苏无锡市北塘区)

76.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?(武汉市青山区)

77.甲每小时加工48个零件,乙每小时加工 36个零件,两人共同工作 8小时后,检验出64个废品。两人平均每小时共加工多少个合格的零件?(上海市)

弟生产了540个,这批零件有多少个?(浙江慈溪市)

79.要生产350个零件,甲、乙两人共同生产3.5小时后,完成了任务的80%。已知甲每小时做42个,乙每小时做几个?(浙江宁海县)

80.甲、乙两人同时加工同样多的零件,甲每小时加 提高工作效率,又用了7.5小时完成了全部加工任务。这时甲还剩下20个零件没完成。求乙提高工效后,每小时加工零件多少个。(浙江宁波市江东区)

81.师徒加工一批零件,徒弟已经加工了总数的20%,师傅加工了总数 谱区)

82.某化肥厂第一季度平均每月生产化肥2.4万吨,前两个月生产化肥的总量比三月份多0.8万吨,三月份生产化肥多少万吨?(浙江临安市)

吨。这批水泥共有多少吨?(湖北当阳市)

84.红星乡今年收玉米3600吨,比去年增产二成,去年收玉米多少吨?(广州市黄埔区)

85.买6个排球和8个篮球共用去249.6元。已知排球的单价是15.6元。篮球的单价是多少元?(浙江鄞县)

的和没修的就同样多。这段公路长多少米?(武汉市青山区)

87.筑路队第一天筑路55米,第二天筑的路是第一天的3倍,第三天筑的比前两天的总数少30米,第三天筑路多少米?(江苏无锡市北塘区)

4700米没有铺。这条公路全长多少米?(浙江乐清市)

89.工程队铺运动场,4天铺了200平方米。照这样的进度,32天铺好了运动场,求这运动场的面积。(两种方法解答,其中一种用比例解)(浙江东阳市)

90.时新手表厂原计划每天生产75块手表,12天完成任务。实际比计划每天多生产15块,实际多少天完成任务?(武汉市青山区)

91.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务。实际每天装配30台,只需几天就可以完成任务?(用比例方法解)(西安市城中区)

92.机械厂制造一批零件,原计划每天生产250个,12天完成,实际每天生产的个数是原来的1.5倍。完成这批零件,实际用了多少天?(上海市长青学校)

93.筑路队修一条路,原计划每天修3.2千米,45天可以修完,实际每天修3.6千米,多少天可以修完?(广西桂林市)

94.一项工程,甲队独做要12小时完成,乙队独做要15小时完成,现在两队合做几小时完成工程的一半?(广州市黄埔区)

95.加工一批零件,师傅单独加工要30小时完成,如果徒弟先加工了9小时,其余的再由师傅加工,还要24小时,那么徒弟单独加工要多少小时完成?(江西景德镇市)

独打,10小时可以打完。求如果由小张单独打,几小时可以打完。(湖北当阳市)

97.一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完。用小卡车单独运,要几小时运完?(浙江常山县)

甲休息了3天,乙休息了2天,丙没有休息。如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么这项工作,从开始计算起,是第几天完成的?(南昌市外国语学校)

99.一项工程,甲单独做16天可以完成,乙单独做12天可以完成。现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程?(石家庄市长安区)

如果乙队单独完成要24天,甲队单独做几天完成?(武汉市青山区)

2天后,余下的乙还要做几天?(银川市二十一小学)

102.一项工程,甲队独做15天完成,乙队独做12天完成。现在甲、乙合作4天后,剩下的工程由丙队8天完成。如果这项工程由丙队独做,需几天完成?(浙江德清县)

现由两队合做,多少天可以完成?(湖北阳新县)

如果两队合修,多少天可以修完?(浙江象山县)

105.一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?(浙江江山市)

江东区)

107.一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作?(天津市红桥区)

108.师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?(银川市实验小学)

110.一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)

111.甲、乙两地相距6千米,张明骑车从甲地到乙地办事,55分钟内必须赶回。若办事需5分钟,张明骑车平均速度至少应是多少?(浙江仙居县)

112.小明从家到学校,步行需要35分钟,骑自行车只要10分钟。他骑自行车从家出发,行了8分钟自行车发生故障,即改步行,小明从家到学校共用了多少分钟?(浙江台州市市区)

113.张华从家到学校,步行需要15分钟,骑车需要5分钟。他从家骑车出发,3分钟后车子发生故障,改为步行,他到达学校步行了多少分钟?(河南开封市)

114.甲、乙两地相距240千米,一辆汽车从甲地开往乙地,2小时行了80千米,照这样计算,行完全程需要几小时?(石家庄长安区)

115.一辆汽车从甲地开往乙地,每小时行50千米,6小时到达;返回时,每小时行60千米,几小时可以到达?(上海市虹口区)

116.从甲城到乙城的铁路长760千米,一列火车3小时行285千米,照这样计算,从甲城到乙城需行多少小时?(用两种方法解答,其中一种要用比例解)(浙江上虞市)

117.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验。如果要提前8小时到达,每小时需行驶多少千米?(浙江嘉兴市)

118.两列火车同时从相距432千米的两地相对开出,4小时后两车相遇。快车每小时行60千米,求慢车每小时行多少千米。(列方程解)(湖北当阳市)

119.甲、乙两车同时从相距520千米的两地相向而行,5小时相遇,已知甲车每小时比乙车每小时多行6千米。甲、乙两车每小时各行多少千米?(上海市)

千米,乙车每小时行多少千米?(武汉市江汉区滑坡路小学)

121.甲、乙两列火车分别从A、B两地同时相对开出,经过6小时相遇,相遇后两车按原来的速度继续行驶,又经过4小时,甲车到达B地。已知甲车每小时比乙车多行12千米,求甲车每小时行多少千米。(南京市鼓楼区)

122.一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问当客车到达甲地时,货车离乙地还有多少千米?(南昌市外国语学校)

123.同学们去参观展览馆,一部分同学骑自行车,他们的时速是24千米;一部分同学步行,他们的时速是6千米。从学校同时出发,15分钟后骑自行车的同学到了展览馆,步行的同学离展览馆还有多远?(江苏无锡市南长区)

124.甲、乙两辆汽车同时从两地相向而行。相遇时,甲车行的路程比乙

125.甲、乙两车同时由A点出发向不同方向开出,4小时后乙车到达C点,这时甲车比乙车多行30千米,已知甲车7小时可绕长方形环路一周,这条环路全长多少千米?(浙江象山县)

126.甲、乙两人绕环形跑道竞走一圈,他俩同时从A点同向行走。在甲 程的比为4∶5,求这个环形跑道的全长。(福建建瓯市)

127.两辆汽车分别从甲、乙两地同时相对开出。已知甲车每小时行70 少千米?(广州市黄埔区)

128.客车和货车同时从甲、乙两地相向开出,客车行完全程需10小时,货车每小时行42千米,3小时后,两车行驶的路程之和与剩下路程相等,甲、乙两地相距多少千米?(南昌市青云谱区)

129.甲、乙两列火车从两站同时相向开出,甲车平均每小时行90千米, 的距离是多少千米?(浙江泰顺县)

130.一条步行街上甲、乙两处相距600米,张华每小时走4千米,王伟每小时走5千米。8时整他们两人从甲、乙两处同时出发相向而行,1分钟后他们调头,反向而行,再过3分钟,他们又调头相向而行,依次按照1、3、5、7……(连续奇数)分钟调头行走。那么张华、王伟两人相遇时间是8时多少分?(武汉大学附属外国语学校)

131.从A地到B地,甲车需6小时,乙车需10小时。两车同时从A地出发到B地,甲车到达B地后立即返回。两车出发后几小时相遇?(湖北松滋县)

132.甲、乙两地相距210千米,A车和B车分别从甲、乙两地同时出发 可以相遇?(武汉市青山区)

如果两车同时从这条公路两端相向而行,几小时相遇?(合肥市中市区寿春学校)

米的方砖铺地,需用多少块?(福建云霄实验小学)

135.一只内直径为8厘米的圆柱形量杯,内装药水的高度为16厘米,恰 小学)

136.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面半径是10厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)(西宁市城中区)

137.一只木箱长9分米,宽6分米,高4分米,做这样的木箱10只(有盖),至少需用木板多少平方米?(浙江上虞市)

138.一个装满小麦的圆柱形粮囤,底面积是3.5平方米,高是1.8米。如果把这些小麦堆成高是1.5米的圆锥形麦堆,占地面积是多少平方米?(江苏无锡市南长区)

体的体积是多少立方分米?(西安市雁塔区)

140.一个圆柱形水桶,底面直径和高都是6分米,这个水桶可盛水多少立方分米?(河南安阳市)

141.一个长方形的游泳池,长50米,宽25米,深2米。

小学生五年级下册200道应用题简单

1.某堆苹果2个2个拿还剩1个,3个3个拿还剩2个,4个4个拿还剩3个,5个5个拿还剩4个,若总数不超过100个,则总数是多少 3*4*5 +1=61 2.小方早上去上学,每分钟走75米,中午回家每分钟走60米,这样中午回家多用时2.5分钟,小芳家与学校的距离?早上:2.5*60/(75-60)=150/15=10 分钟距离=10*75=750 米 3.幼儿园20个小班与30个大班小朋友分饼干,小班小朋友每人分10块,大班小朋友没人比总平均多2块,一共分掉多少块饼干? 50X=30(X+2)+20*10=30X+260, X=13, 一共分50*13=650个。 4.某校足球是排球的3倍,每班借6个足球,5个排球,借了多少个班后,排球界完了,足球还剩72只? 72/(3*5-6)=72/9=8, 8个班后剩72只足球。 5.甲乙丙共有168元,第一次家拿出与乙相同的钱数给乙,第二次乙拿出与丙相同的钱数给丙,第三次丙拿出与甲相同的钱数给甲,这样三人钱数相同,原来甲比乙多多少元?最后每人56元,倒推:甲 乙 丙 28 56 84 28 98 42 77 49 42 原来甲比乙多:77-49=28元 6.百货店运来240双鞋,分别装在木箱与纸箱中,纸箱个数是木箱的4倍,木相比纸箱少6个,若2个纸箱与第一个木箱的球鞋一样多,求每个木箱能装多少只鞋。木箱数量=6/(4-1)=2个,纸箱个数=8 240/(2+8/2)=240/6=40 只。

求52道小学六年纪奥数题!!好的追加!!

1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?

90#2=45盒?

90#5=18盒?

答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。?

2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗??

57#3+19盒?

答:能正好装完。?

3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完??

10000#(115+135)=40分?

答:40分钟可以打完。?

4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?

13X14=192人?

答:五年级参加植树的人至少有192人.?

下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.?

5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:?

解:两车X时后相遇.?

31X+44X=300?

75X=300?

X=4?

4小时=240分钟?

答:经过240分钟后两车相距300千米.?

6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?

解:设X天后挖通隧道?

3X+4X=119?

7X=119?

X=17?

答:经过17天挖通隧道.?

7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?

解:设舞蹈队有X人?

6X+X=140?

7X=140?

X=20人?

答:舞蹈队有20人.?

从这里开始不是方程题了.?

8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?

1300X2=2600米 2600#(180+80)?

=2600#260?

=10分?

答:这时哥哥走了10分钟.?

9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?

360+480+400=1240个?

答:至多可做1240个小礼包.?

10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.?

40#2=20人 40#4=10人 40#5=8人?

40#8=5人 40#@0=4人 40#20=2人?

答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.?

11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?

(15+24)X18#2=351平方米?

351X9=3195株?

答:这块地可种玉米3159株.?

12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?

5X4X3=60人 60+1=61人?

答:这班有61人.?

13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?

7X5X3=105粒 105+1=106粒?

答:这盒巧克力糖至少有106粒.?

14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?

15米=150分米 1.2米=12分米 30厘米=3分米?

150X12=1800平方分米 3X3=9平方分米?

1800#9=200块 200X3=600元?

答:需要200块这样的方砖,需要600元.?

15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?

70X45=3150平方米 3150#90=35米?

答:高是35米.?

16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?

10-5+1=6层 (10+5)X6#2?

=15X6#2?

=90#2?

=45根?

答:这批钢管有45根.?

1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨。已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨。)(用方程解答)

2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米。如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?

3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?

4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高。它的长和宽各是多少厘米?

第一题:

解:深至少是X米,

18*8X=720

144X=720

X=5?

答:深至少是5米。

第二题:

50*25*1.2=1500(立方米)

1500/25=600(分钟)

600分钟=10小时

答:需要10小时。

第三题:

16*6=96立方米=96升

96*0.74=71.04千克

答:这个油桶可以装71.04千克。

第四题:

1分米=10厘米

2100/10=210(厘米)

210/70=3(厘米)或者 210/30=70(厘米)

答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米。

第5题:

有一个正方体,边长为2厘米,求这个正方体的表面积?

答案:2*2*6=24(平方厘米)

第6题:

有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?

答案:(2*2+2*1+2*1)*2=16(平方厘米)

第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?

答案:表面积:(2*5+2*8+5*8)*2=132(平方米)

体积:2*5*8=80(立方米)

第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?

0.8*0.8*0.8=0.512(平方米)=512(升)

0.8*0.8*6=3.084(平方米)=348(平方分米)

第9道:有三根木棒,分别长12厘米,44厘米,56厘米。要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?

答案:这里求的是12,44,56,的最大的公约数!你自己算吧!

第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?

答案:50*50*5=12500(平方厘米)

第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?

答案:这里是求8和10的最小公倍数。

第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?

答案:这里求的是5和7的最小公倍数在+上1

第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?

答案:40*45=1800(平方米)

1800/75=24(米)

第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?

答案:3.4*2=6.8(平方米)

第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?

答案:8.5*4=34(平方米)

第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?

答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)

第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?

答案:(5+12)*8=68(平方米)

第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米。做这个箱子至少要多少材料?

答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)

第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?

答案:0.6*0.6*6=2.16(平方米)

第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?

答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?

答案:30

22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?

答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面?

23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个??

答案:(25,75)=25个(25是25和75的最大公约数)

25/25=1个

75/25=3个

最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个。

24.兰兰的父母在外地工作,她住在奶奶家。妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次。请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次??

答案:(6,9)=18天(18是6和9的最小公倍数)

60/18=3次......6天

至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次?

25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车。

答案:6=2*3

8=2*2*2

12=2*3*2

3*2*2*2=24?

26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米

答案:(72÷24)×(48÷24)=3×2=6

可以裁6块.?

27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?

答案;求4和6的最小公倍数,等于24天

28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?

答案:求30和36的最大公约数,等于6

29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?

答案:求50.60和90的最大公约数,等于10

30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花。这些花最多能做多少花束?

答案:求24.36和48的最大公约数,等于12

31.有一个长方体,宽是高的3倍,宽与高的长度和等于长。现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米。原来长方体的体积是多少?

答案:设高为a,宽为3a,长为4a

那么横切之后,表面积增加2*3a*4a

竖切之后,表面积增加2*a*3a

24a^2+6a^2=200

a=(20/3)^0.5

体积v=12a^3=160/3*(15)^0.5?

32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米??

答案:0.4×0.25+2×0.25×0.3+0.4×0.3

=0.1+0.15+0.24

=0.49㎡

33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米??

答案:36÷12=3㎝

6×3×3

=54平方厘米

34.一个底面是正方形的长方形,侧面展开恰好是正方形,长方体的高为8分米,它的体积。?

答案:

长方体的高=底面周长=8分米?

长方体底面边长=8÷4=2(分米)?

体积=底面积×高=2×2×8=32(立方分米)?

不够,可追问追问还有没有体积和表面积的应用题越多越好回答长方体和正方体应用题

1、加工一个长方体铁皮烟囱,长2.5dm,宽1.6dm,高2m,至少要用多少平方分米铁皮?

解:2米=20分米

(2.5*20+1.6*20)*2=164

2、学校要挖一个长方形状沙坑,长4m,宽2m,深0.4m,需要多少立方米的黄沙才能填满沙坑?

解: 4×2×0.4=3.2吨

3、把一块棱长8cm的正方体钢坯,锻造成长16cm,宽5cm的长方体钢板,这钢板有多厚?(损耗不计)

解:厚度=8×8×8÷16÷5=6.4厘米

4、一个长方体机油桶,长8dm,宽2dm,高6dm.如果每升机油重0.72千克,可装机油多少千克?

解:8*2*6*0.72=69.12

5、一个长12cm,宽4cm,高5cm的长方体纸盒,最多能容纳几个棱长2cm的小立方体?

解:12*4*5=240立方厘米

2*2*2=8立方厘米

240*8=30

6、一个正方体的水箱,每边长4dm,把一箱水倒入另一只长8dm,宽2.5dm的长方体水箱中,水深是多少?

解:(4×4×4)÷(8×2.5)=3.2

7、一个底面是正方形的长方体,底面周长是24cm,高是10cm,求它的体积。

解:底面边长=24*4=6厘米

底面积=6*6=36平方厘米

体积=36*10=360立方厘米

8、把240立方米的土铺在长60m,宽40m的平地上,可以铺多厚?

解:长方体体积=长×宽×高,240=60×40×高 ?

高=1m ?所以厚1m

9、一个长方体玻璃鱼缸,长12dm,宽5dm,高6dm。①制作这个玻璃鱼缸至少需要多少平方分米的玻璃?②在里面放水,使水面离鱼缸口1dm,需放水多少千克?(1立方分米的重1千克)

解:12*5+(12*6+5*6)*2=264平方分米

12*5*5=300立方分米=300千克

10、一个正方体纸盒的表面积是5.4平方分米,它的占地面积是多少平方分米?

解:5.4/6=0.9平方分米

11、一个正方体的棱长和48cm,求正方体的底面积和表面积。

解: 正方体的棱长:48/12=4厘米

表面积:6*4*4=96平方厘米

体积:4*4*4=64立方厘米

12、做一个长和宽都是3dm,高是4dm的纸箱,至少需要纸板多少平方分米?

解:(3*3+3*4+3*4)*2=66平方分米

13、做一个长12dm,宽5dm,高8dm的金鱼缸(无盖),需要多少平方分米的玻璃?如果每平方分米的玻璃0.8元,做一个金鱼缸需要多少元钱?

解:需要玻璃=12×5+(12×8+8×5)×2=332(平方分米)

需要的钱数=332×0.8=265.6(元)

如何学好数学:

1、学好数学前提得每节数学课都认真听讲,认真的去理解这节课讲的什么?

2、课后认真复习这节课教的东西,熟练掌握其中的精髓。

3、做这节课知识内容的习题,多练习几遍,要牢记于心!

4、课前要预习下节课讲的内容,这样听课的效果会更佳!

5、考试前要复习,前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的。

小学五年级下册应用题库及答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2、2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33.学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35.学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38.光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43.有一个长方形纸板,如果只把长增加2厘米,面积就增加米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

答案;

1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3

=45+15

=60(千克)

答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4

=8÷4

=2(千米)

答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]

=0.6÷[13-20÷2]

=0.6÷3

=0.2(元)

答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2

=255(千米)

答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5- 3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:

(32.5×2+5)÷(4+1)

=(65+5)÷5

=70÷5

=14(吨)

甲仓存粮:

14×4-5

=56-5

=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:

(400-10×4)÷(4+5)

=(400-40)÷9

=360÷9

=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:

(455-30×6)÷(6+5)

=(455- 180)÷11

=275÷11

=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(75- 65)]

=140×[40÷10]

=140×4

=560(千米)

答:甲乙两地相距 560千米。

11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

解:(20×250-4400)÷(10+20)

=600÷120

=5(箱)

答:损坏了5箱。

12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

解:4×2÷(12-4)

=4×2÷8

=1(时)

答:第二中队1小时能追上第一中队。

13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)

=2500÷500

=5(天)

这堆煤的重量:

1500×(5-1)

=1500×4

=6000(千克)

答:这堆煤有6000千克。

14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

答:每支铅笔0.2元。

15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解:卡车的数量:

360÷[10×6÷(8-6)]

=360÷[10×6÷2]

=360÷30

=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]

=360÷[30+10]

=360÷40

=9(辆)

答:可用卡车12辆,客车9辆。

16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:

(720×3-1200)÷80

=960÷80

=12(天)

公路全长:

(720+80)×12+1200

=800×12+1200

=9600+1200

=10800(米)

答:这条公路全长10800米。

17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋

150双

18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

答:运进水泥180袋,沙子360袋。

19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的价钱:

3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

答:这两个加数分别是52和520。

21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

解:9-(16-9)

=9-7

=2(千克)

答:桶重2千克。

22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

解:(10-5.5)×2=9(千克)

答:原来有油9千克。

23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

解:(22-10)÷(5-2)

=12÷3

=4(千克)

答:桶里原有水4千克。

24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

答:原来小红有23本,小华有13本。

25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

解:15×5÷(5-2)=25(千克)

答:原来每桶油重25千克。

26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

解:9÷(3-1)×(5-1)=18(分)

答:锯成5段需要18分钟。

27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

解:35÷(2-1)=35(人)

女工原有:

35+17=52(人)

男工原有:

52+35=87(人)

答:原有男工87人,女工52人。

28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

解:12×5÷(5+1)=10(千米)

答:返回时平均每小时行10千米。

29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

解:18÷(5+4)=2(小时)

8×2=16(千米)

答:狗跑了16千米。

30、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

解:总个数:

(21+20+19)÷2=30(个)

白球:30-21=9(个)

红球:30-20=10(个)

黄球:30-19=11(个)

答:白球有9个,红球有10个,黄球有11个。

31、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

解:(33-18)÷(5-2)=5(米)

18-5×2=8(米)

答:一根粗钢管长8米,一根细钢管长5米。

32、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

解:4.8×10÷(12-10)=24(吨)

答:原计划每天生产水泥24吨。

33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。

解:70+30-80

=100-80

=20(人)

答:既唱歌又跳舞的有20人。

34、想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。

解:36+38+5-59=20(人)

答:双科都参加的有20人。

35、想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

解:5×(4÷2)+6=16(把)

640÷16=40(元)

40×5÷2=10O(元)

答:桌子和椅子的单价分别是100元、40元。

36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

解:(45-5)÷4+5

=10+5

=15(岁)

答:今年儿子15岁。

37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

解:18×2÷(4-1)=12(千克)

12×4=48(千克)

答:原来甲桶有油48千克,乙桶有油12千克。

38、想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

解:(5×20-75)÷8=2(题)……5(分)

20-2-1=17(题)

答:答对17题,答错2题,有1题没答。

39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

解:(240+264)÷(20+16)

=504÷30

=14(秒)

答:从两车头相遇到两车尾相离,需要14秒。

40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

解:(600+1150)÷700

=1750÷700

=2.5(分)

答:火车通过隧道需2.5分。

41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

解:60×2÷(60-50)=12(分)

50×12=600(米)

答:小明从家里到学校是600米。

42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

解:600÷(400-300)

=600÷100

=6(分)

答:第一次相遇

43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

解:(12÷2)×(8÷2)=24(平方厘米)

答:这个长方形纸板原来的面积是24平方厘米。

时经过的时间是6分钟。

44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

解:(20-7.4)÷3-2.4

=12.6÷3-2.4

=4.2-2.4

=1.8(元)

答:每千克梨1.8元。

45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

解:135÷3÷(2+1)=15(千米)

15×2=30(千米)

答:甲乙每小时分别行30千米、15千米。

46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

解:12÷(8-5)=4(次)

8×4+5×4+12=64(个)

或8×4×2=64(个)

答:一共取了4次,盒子里共有64个球。

47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

解:

12和18的最小公倍数是36

6时+36分=6时36分

答:下次同时发车时间是上午6时36分。

48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

解:(45-15)÷(11-1)=3(岁)

15-3=12(年)

答:12年前父亲的年龄是儿子年龄的11倍。

49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

解:2、3、4、5的最小公倍数是60

60-1=59(支)

答:这盒铅笔最少有59支。

50、想:根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

解:(40÷5)×(40÷8)=40(平方米)

答:平行四边形地原来的面积是40平方米

因数与倍数

1、有56个苹果,3个3个装能正好装玩吗?2个2个装呢?5个5个呢?

2、妈妈在花店买了一些马蹄莲和郁金香。马蹄莲一枝10元,郁金香一枝5元,妈妈付了50元,找回13元,对吗?

3、同学们参加兴趣小组,一共有22人,3人分一组,至少再来几人才能正好分完?

长方体和正方体

表面积计算

1、做10个棱长8厘米的正方体铁框架,至少需多长的铁丝?

2、用铁皮做一个铁盒,使它的长、宽、高分别是1.8分米,1.5分米和1.2分米,做一个这样的铁盒至少要用铁皮多少平方米?

3、做一个没盖的正方体玻璃鱼缸,棱长是3分米,至少需要玻璃多少平方米?

4、我们学校要粉刷教室,教室长8米,宽7米,高3.5米,扣除门窗、黑板的面积13.米,已知每平方米需要5元涂料费。粉刷一个教室需要多少钱?

5、一个商品盒是棱长为6厘米的正方体,在这个盒的四周贴上商标,贴商标的面积最大是多少平方厘米?

6、木版做长、宽、高分别是2.8分米,1.5分米和2.2分米抽屉,做5个这样的抽屉至少要用木版多少平方米?

7.有一个养鱼池长18米,宽12米,深3.5米,要在养鱼池各个面上抹一层水泥,防止渗水,如果每平方米用水

泥5千克,一共需要水泥多少千克?

8、加工厂要加工一批电视机机套,(没有底面)每台电视机的长60厘米,宽50厘米、高55厘米,做1000个机套至少用布多少平方米?

9.做24节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少用多少平方米的铁皮?

10、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )

体积计算

1、一个长方体的长是4分米,宽是2.5分米,高是3分米,求它的体积是多少立方分米?

2、一个长方体沙坑,长4米,宽2米,深0.5米,如果每立方米黄沙重1.4吨,这黄沙重多少吨?

3.有一种长方体钢材,长2米,横截面是边长为5厘米的正方形,每立方分米钢重7.8千克,这根方钢材重多少千克?

4、一个长方体,底面积是30平方分米,高3米,它的体积是多少立方分米?

5、一张写字台,长1.3m宽0.6m、高0.8m有20张这样的写字台要占多大空间?

6、一个棱长是5分米的正方体鱼缸,里面装满水,把水倒入一个底面积4分米,高6分米的的长方体鱼缸里,鱼缸里水有多深?

7、一个棱长8分米的正方体水槽里装了490升水,把这些水倒入一个长10分米,宽7分米,高8分米的长方体水槽里,水槽里的水深是多少?

8、把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)

9. 一个长方体油桶,底面积是1分米,它可装43.2千克油,如果每升油重0.8千克,油桶内油高是多少?

10、 一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?

11、把一块长26dm的长方形木板,在四个角上分别剪去边长为3dm的正方形,将它制成容积为840立方分米的长方体无盖容器,这块木板原来的宽是多少?

12、一个长方体游泳池长60米,宽30米,深2米,游泳池占地多少平方米?沿游泳池的内壁1.5米处用红漆划一条水位线,这条线的长度是多少?现在游泳池内的水正好到达水位线,求池内水的体积?

分数的意义很基本性质

1、一个3平方米的花坛,种4种花,每种花平均占地多少平方米?5种呢?(用分数表示)

2、明用15分钟走了1千米路,平均每分钟走几分之几千米、

3、老师给同学们买了5米红绸带,平均分给6个人演节目,每人能分几米?

4、百货商店今天卖出15台电视机,7台洗衣机。卖出的电视机台数是洗衣机的几分之几?

5、我们班五分之二的同学参加了舞蹈小组,十分之四的人参加了书法小组,哪个小组的人数多?

1、在中原路上铺一条地下电缆,已经铺了34 ,还剩下250米没有铺。这条电缆全长多少米

2、修一段路,第一天修了全长的1/4 ,第二天修了90米,这时还剩下150米没有修。这段路全长多少米?

3、建筑工地有一堆黄沙,用去了23 ,正好用去了60吨。这堆黄沙原来有多少吨?

4、声音在空气中3秒钟大约传1千米,光的速度每秒大约300000千米,声音的速度大约是光速的几分之几?

5、一块小麦试验田,原计划每公顷产小麦8吨,实际每公顷产小麦之几?

6、职工食堂4月份计划烧煤5吨,实际烧煤4.8吨。节约了百分之几?

7、用5000千克小麦可以磨出面粉4250千克,求小麦的出粉率。

8、小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?

9、六(1)班有学生50人,某天请假2人,求这天的出勤率?

10、植树节那天共植树若干棵,成活了485棵,没有成活的15棵,求这次植树的成活率。

11、王老师到体育用品商店买了5只小足球,付出100元,找回32.5元,每只小足球多少元?

12、甲乙两辆汽车同时从相距255千米的两地相对开出,甲车每小时行52千米,乙车每小时行57千米,经过几小时后两车还相距37千米?

13、师徒二人共加工208个机器零件,师傅加工的零件数比徒弟的2倍还多4个,师傅和徒弟各加工多少个零件?

14、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?

15、五年级买一批笔记本奖给三好学生,如果每人奖给5本,还剩3本;如果每人奖给6本,又少12本。五年级评出三好学生多少名?买了多少本笔记本?

16、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?

17、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?(用两种方法解)

18、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?

19、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?

20、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?

21、同学们去春游,车上已经坐了45人;还有4个小组在等下一辆车,每组9人。去春游的一共有多少人?

22、一共有150人去春游,已经走了54人,剩下的坐两辆车去,平均每辆车要坐多少人?

23、舞蹈队里有18名男生,女生人数是男生的2倍,舞蹈队里男、女生一共有多少人?

24、同学们做花,小军做了63朵,小红做的花比小军少做18朵,两人一共做了多少朵花?

25、食堂里第一次买来白菜25千克,第二次买来白菜175千克,按每千克白菜6角钱计算,食堂里买白菜一共用去多少钱?

26、小华给小刚看一本书,小华4天看了132页,小刚3天看96页,谁看得快?为什么?

27、妈妈给小明买了3件汗衫,每件汗衫23元,付给营业员100元,还应找回多少元?

28、体育用品商店原来有72只篮球,卖出60只,又购进45只,现在有多少只篮球?

29、同学们去天文台参观,女生有9人,男生去的人数是女生的3倍,一辆40座的汽车够坐么?

30、学校活动室里有24盒象棋,军旗的盒数是象棋的两倍,跳棋有12盒,跳棋比军旗少多少盒?

31. 学校买来白粉笔80盒,红粉笔20盒,用了60盒,还剩多少盒?

32. 老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?

33. 老师拿70元去买书,买了7套故事书,每套9元,还剩多少元?

34. 制衣组有90米布,用了63米,剩下的布做了9套衣服.平均每套衣服用布多少米?

35. 食品店有80包方便面,上午卖了26包,下午卖了34包,还剩多少包?(用两种方法解答)

36、 某化肥厂一月份生产化肥310吨,二月份生产400吨,三月份生产490吨化肥,平均每月生产化肥多少吨?

37、一匹马每天吃12千克草, 照这样计算, 25匹马, 一星期可吃多少千克草?(用两种方法计算)

38、工人王师傅和徒弟做机器零件, 王师傅每小时做45个, 徒弟每小时做28个, 王师傅工作6小时, 徒弟工作8小时, 他们共做多少个机器零件?

39、工厂有煤8000千克, 原计划烧25天, 由于改进炉灶, 实际烧了32天, 平均每天比原计划节约多少千克?

40、工地需要1280袋水泥, 用8辆大车4次才全部运来, 一辆大车, 一次可运多少袋化肥?(用两种方法计算)

41、 农具厂上半年生产农具4650件,下半年生产农具5382件,全年平均每月生产多少件?

42、 服装加工部用120米布可做成人制服24套, 如果做儿童服装, 可做30套, 每套儿童服装比成人服装少用布多少米?

43、一个养鸡场四月份卖出12300只鸡, 五月份卖出的比四月份的2倍还少200只, 两个月一共卖出多少只鸡?

44、一台磨面机每小时磨面800千克,照这样计算,6台磨面机5小时能磨面粉多少千克?(用两种方法解答)

45、一堆煤共800吨,用5辆卡车,16次可以运完,平均每辆卡车每次运几吨?

46、一辆汽车6小时行了300千米,一列火车6小时行了600千米,火车比汽车每小时多行多少千米?

47、向阳小学气象小组一周中,测得每天的最高气温分别为:31、31、34、32、33、30、33度.这一周最高平均气温是多少度?

48、某工厂原计划一年生产农具4800部, 实际用10个月就完成了任务, 实际平均每月比原计划每月多生产多少部农具?

49、一台机器8小时可以加工320个零件, 照这样计算, 要用5台机器加工2000个零件, 需要多少小时?

50、某煤矿四月份计划出煤38400吨,技术革新后平均每天比原计划每天增产256吨,四月份实际生产多少吨煤?(按30天计算)

51、第一小组有6个人,其中5个人语文考试的平均分是85分,加上王刚的分数后,平均成绩是87分,王刚的考试成绩是多少分?

52、两个水管同时向池中放水,粗管每小时放水15吨,细管每小时放水11吨,经过8小时把水放满,这个水池能装多少吨水?(用两种不同方法计算)

53、一个长方形操场,长50米,宽40米,扩建后长和宽分别增加5米,扩建后操场面积增加了多少平方米?

54、一列火车上午6小时行了366千米,下午4小时行了276千米.下午比上午平均每小时多行多少千米?

55、一个工厂前6个月用煤120吨,后半年用煤102吨.每吨煤按80元计算,后半年比前半年平均每月用煤节约多少元?

56、一个林场前年植树1480棵,去年植树的棵数是前年的2倍,今年植树比前两年植树的总数还多420棵,今年植树多少棵?

57、一个长方形长21厘米,是宽的3倍,求这个长方形的周长和面积各是多少?

58、 一吨废纸可以生产纸张700千克, 如果一千克纸能制成25本练习本, 那么12吨废纸生产的纸张能制成多少本练习本?

59、录制一份气功报告需要4盒录音带, 录满一面录音带需要30分, 这份报告一共录了多少小时?

60、一台推土机3小时可铺路600米,如果每小时多铺20米,8小时能铺多少米?

61、李庄农民往粮库运小麦, 第一天运了10车, 第二天运了7车, 每车运小麦2吨400千克, 两天共运多少千克? 合多少吨多少千克?

62、 100块湿砖重450千克, 每块砖吹干后减轻850克, 100块湿砖在吹干后重多少千克?

63、一台自动包装机用20秒包5块糖, 照这样计算, 这个机器1小时能包装多少块糖?

64、小华步行4千米680米,用了1时18分,平均每分行多少米?

65、一辆自重3吨的卡车,车上装有7000千克木料,要通过一座限重11吨的桥.算一算,卡车能否通过这座桥?

66、28行播种机的宽度是4米.用拖拉机牵引,每小时行5千米,可以播种多少公顷土地?

67、甲、乙两堆货物共重8000千克,已知甲堆货物的重量是乙堆货物的4倍.求甲、乙两堆货物各重多少千克?

68、装订车间每人每小时装订课本640册,照这样计算,12人8小时装订课本多少册?

69、汽车队开展节约用油活动,12辆车一年共节约汽油7200千克,平均每辆车每个月节约汽油多少千克?

70、一部电话机售价320元,一台“彩电”的售价是电话机售价的8倍,一台电脑的售价比“彩电”售价的3倍还多1000元,一台电脑多少元?

71、两个车间生产零件,5天后甲车间生产1520个零件,乙车间生产1280个零件,若每天工作8小时,乙车间比甲车间每小时少生产多少个零件?

72、一本书,小华看了45页,没看的比看了的3倍少8页,这本书共有多少页?

73、师徒二人共同加工一批零件,师傅每小时加工125个,徒弟每小时加工100个,8小时完成任务,完成任务时,师傅比徒弟共多加工多少个零件?师傅和徒弟共加工多少个零件?

74、已知甲、乙、丙三个数的平均数是268,丁数为148,求这四个数的平均数是多少?

75、同学们参加环保活动,六一班42人,平均每人清理环境80平方米,六二班38人,共清理环境2800平方米,两个班平均每人清理环境多少平方米?

76、据统计篮鲸3小时能游108米,海豚5小时能游245米,每小时篮鲸比海豚少游多少米?

77、一个生产小组有25人,一天加工零件1500个,后来又调入了8个人,照这样计算,生产小组每天比原来多加工多少个零件?

78、华联商厦一天卖出“南极人”纯棉内衣90套,上午卖出38套,每套纯棉内衣218元,上午比下午少卖出多少元?

79、粮食加工厂用2台磨面机5天磨面粉28800千克,每天工作8小时.第一台每小时磨面314千克,第二台每小时磨面多少千克?

80、小刚读一本书,第一天读10页,以后每天都比前一天多读5页,最后一天读40页正好读完.他一共读了多少天?

81、小华骑车行20千米400米,用了1时20分.平均每小时骑车行多少千米多少米?

82、工厂运来一批原料,已经运来15吨400千克,剩下的比运来的3倍多500千克.这批原料共有多少千克?合多少吨多少千克?

83、打字员每分钟打150个字,要打一份30000字的书稿需要几小时几分钟?

84、一块长方形稻田,宽200米,长是宽的2倍,这块稻田有多少公顷?如果每公顷稻田收稻谷6500千克,这块地共收稻谷多少千克?

85、10吨小麦可磨面粉8.5吨,100千克小麦可磨面粉多少吨?

86、100吨海水含盐3吨,10吨海水含盐多少吨?

87、五金厂共生产铁钉3000千克,装进100只木箱后,还剩500千克,还需要多少只木箱?

88、一袋米吃去32.18千克,还有17.82千克,这袋米原有多少千克?

89、一个足球48.36元,一个篮球54.27元,王老师用150元买 足球,篮球各一个,应找回多少元?

90、一个长方形的长是0.54米,比宽多8厘米,这个长方形的周长是多少米?

91、两根电线,第一根长48.3米,比第二根长6.5米,第一根用 去9.4米后,比第二根少多少米?

92、一把椅子35.4元,比一张桌子便宜 16.2元,学校买了100 套桌椅,共用多少元?

93、一根绳子分成三段,第一、二段长38.7米,第二、三段长 41.6米,第一、三段长39.7米.求三段绳子各长多少米?

94、甲仓有粮58.4吨,乙仓有粮44吨,从甲仓运走多少吨粮以后,乙仓存粮是甲仓的2倍?

95、学校买来320套课桌椅,每张桌子55元,每把椅子36元,学校共花多少元?(用两种方法解答)

96、7名工人8天加工服装 2632件,照这样计算,再增加 3名工人,1天能加工服装多少件?

97、果园里有梨树132棵,比桃树少44棵,苹果树的棵数等于梨树、桃树总棵数的2倍,果园里有苹果树多少棵?

98、学校为同学们买排球花了360元,买足球花的钱比买排球的2倍少60元,又恰好是买篮球的2倍,学校买篮球比买排球 少花了多少元?

99、学校把清扫一块长39米,宽20米的绿地任务分配给两个 班,甲班有40人,乙班有38人,如果按人数分配,每班应清 扫多少平方米?

100、三筐苹果共重110.5千克,如果从第一筐取出18.6千克,从第二筐取出23.5千克,从第三筐取出20.4千克,则三筐所剩的苹果重量相同,原来三筐苹果各有多少千克?

声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。